]> gitweb.michael.orlitzky.com - hath.git/blob - src/IPv4Address.hs
Bump the version number to 0.0.4 in hath.cabal.
[hath.git] / src / IPv4Address.hs
1 module IPv4Address(
2 ipv4address_properties,
3 ipv4address_tests,
4 IPv4Address(..),
5 most_sig_bit_different,
6 ) where
7
8 import Data.Maybe (fromJust)
9 import Test.HUnit (assertEqual)
10 import Test.Framework (Test, testGroup)
11 import Test.Framework.Providers.HUnit (testCase)
12 import Test.Framework.Providers.QuickCheck2 (testProperty)
13 import Test.QuickCheck (Arbitrary(..), Gen, Property, (==>))
14
15 import Maskable
16 import Maskbits
17 import Octet
18
19 data IPv4Address =
20 IPv4Address { octet1 :: Octet,
21 octet2 :: Octet,
22 octet3 :: Octet,
23 octet4 :: Octet }
24 deriving (Eq)
25
26
27 instance Show IPv4Address where
28 show addr = concat [(show oct1) ++ ".",
29 (show oct2) ++ ".",
30 (show oct3) ++ ".",
31 (show oct4)]
32 where
33 oct1 = (octet1 addr)
34 oct2 = (octet2 addr)
35 oct3 = (octet3 addr)
36 oct4 = (octet4 addr)
37
38
39 instance Arbitrary IPv4Address where
40 arbitrary = do
41 oct1 <- arbitrary :: Gen Octet
42 oct2 <- arbitrary :: Gen Octet
43 oct3 <- arbitrary :: Gen Octet
44 oct4 <- arbitrary :: Gen Octet
45 return (IPv4Address oct1 oct2 oct3 oct4)
46
47
48
49 instance Maskable IPv4Address where
50
51 apply_mask addr mask bit =
52 apply_mask' mask
53 where
54 oct1 = octet1 addr
55 oct2 = octet2 addr
56 oct3 = octet3 addr
57 oct4 = octet4 addr
58
59 -- A copy of 'addr' with the fourth octet zeroed (or oned).
60 new_addr1 = addr { octet4 = (apply_mask oct4 Zero bit) }
61
62 -- Likewise for new_addr1's third octet.
63 new_addr2 = new_addr1 { octet3 = (apply_mask oct3 Zero bit) }
64
65 -- And new_addr2's second octet.
66 new_addr3 = new_addr2 { octet2 = (apply_mask oct2 Zero bit) }
67
68 -- This helper function allows us to pattern-match cleanly.
69 apply_mask' :: Maskbits -> IPv4Address
70
71 apply_mask' ThirtyTwo = addr
72
73 apply_mask' ThirtyOne = addr { octet4 = (apply_mask oct4 Seven bit) }
74
75 apply_mask' Thirty =
76 addr { octet4 = (apply_mask oct4 Six bit) }
77
78 apply_mask' TwentyNine =
79 addr { octet4 = (apply_mask oct4 Five bit) }
80
81 apply_mask' TwentyEight =
82 addr { octet4 = (apply_mask oct4 Four bit) }
83
84 apply_mask' TwentySeven =
85 addr { octet4 = (apply_mask oct4 Three bit) }
86
87 apply_mask' TwentySix =
88 addr { octet4 = (apply_mask oct4 Two bit) }
89
90 apply_mask' TwentyFive =
91 addr { octet4 = (apply_mask oct4 One bit) }
92
93 apply_mask' TwentyFour = new_addr1
94
95 apply_mask' TwentyThree =
96 new_addr1 { octet3 = (apply_mask oct3 Seven bit) }
97
98 apply_mask' TwentyTwo =
99 new_addr1 { octet3 = (apply_mask oct3 Six bit) }
100
101 apply_mask' TwentyOne =
102 new_addr1 { octet3 = (apply_mask oct3 Five bit) }
103
104 apply_mask' Twenty =
105 new_addr1 { octet3 = (apply_mask oct3 Four bit) }
106
107 apply_mask' Nineteen =
108 new_addr1 { octet3 = (apply_mask oct3 Three bit) }
109
110 apply_mask' Eighteen =
111 new_addr1 { octet3 = (apply_mask oct3 Two bit) }
112
113 apply_mask' Seventeen =
114 new_addr1 { octet3 = (apply_mask oct3 One bit) }
115
116 apply_mask' Sixteen =
117 new_addr2
118
119 apply_mask' Fifteen =
120 new_addr2 { octet2 = (apply_mask oct2 Seven bit) }
121
122 apply_mask' Fourteen =
123 new_addr2 { octet2 = (apply_mask oct2 Six bit) }
124
125 apply_mask' Thirteen =
126 new_addr2 { octet2 = (apply_mask oct2 Five bit) }
127
128 apply_mask' Twelve =
129 new_addr2 { octet2 = (apply_mask oct2 Four bit) }
130
131 apply_mask' Eleven =
132 new_addr2 { octet2 = (apply_mask oct2 Three bit) }
133
134 apply_mask' Ten =
135 new_addr2 { octet2 = (apply_mask oct2 Two bit) }
136
137 apply_mask' Nine =
138 new_addr2 { octet2 = (apply_mask oct2 One bit) }
139
140 apply_mask' Eight =
141 new_addr3 { octet2 = (apply_mask oct2 Zero bit) }
142
143 apply_mask' Seven =
144 new_addr3 { octet1 = (apply_mask oct1 Seven bit) }
145
146 apply_mask' Six =
147 new_addr3 { octet1 = (apply_mask oct1 Six bit) }
148
149 apply_mask' Five =
150 new_addr3 { octet1 = (apply_mask oct1 Five bit) }
151
152 apply_mask' Four =
153 new_addr3 { octet1 = (apply_mask oct1 Four bit) }
154
155 apply_mask' Three =
156 new_addr3 { octet1 = (apply_mask oct1 Three bit) }
157
158 apply_mask' Two =
159 new_addr3 { octet1 = (apply_mask oct1 Two bit) }
160
161 apply_mask' One =
162 new_addr3 { octet1 = (apply_mask oct1 One bit) }
163
164 apply_mask' Zero =
165 new_addr3 { octet1 = (apply_mask oct1 Zero bit) }
166
167
168 instance Bounded IPv4Address where
169 -- | The minimum possible IPv4 address, 0.0.0.0.
170 minBound = IPv4Address minBound minBound minBound minBound
171
172 -- | The maximum possible IPv4 address, 255.255.255.255.
173 maxBound = IPv4Address maxBound maxBound maxBound maxBound
174
175
176
177 -- | Convert @addr@ to an 'Int' by converting each octet to an 'Int'
178 -- and shifting the result to the left by 0,8.16, or 24 bits.
179 ipv4address_to_int :: IPv4Address -> Int
180 ipv4address_to_int addr =
181 (shifted_oct1) + (shifted_oct2) + (shifted_oct3) + oct4
182 where
183 oct1 = octet_to_int (octet1 addr)
184 oct2 = octet_to_int (octet2 addr)
185 oct3 = octet_to_int (octet3 addr)
186 oct4 = octet_to_int (octet4 addr)
187
188 shifted_oct1 = oct1 * 2^(24 :: Integer)
189 shifted_oct2 = oct2 * 2^(16 :: Integer)
190 shifted_oct3 = oct3 * 2^(8 :: Integer)
191
192
193
194 -- | Convert an 'Int' @x@ to an 'IPv4Address'. Each octet of @x@ is
195 -- right-shifted by the appropriate number of bits, and the fractional
196 -- part is dropped.
197 ipv4address_from_int :: Int -> Maybe IPv4Address
198 ipv4address_from_int x
199 | (x < 0) || (x > 2^(32 :: Integer) - 1) = Nothing
200 | otherwise = do
201 -- If the algebra is right, none of these octet_from_int calls
202 -- below can fail since 0 <= x <= 2^32 - 1.
203 oct1 <- octet_from_int shifted_x1
204 oct2 <- octet_from_int shifted_x2
205 oct3 <- octet_from_int shifted_x3
206 oct4 <- octet_from_int x4
207 return $ IPv4Address oct1 oct2 oct3 oct4
208 where
209 -- Chop off the higher octets. x1 = x `mod` 2^32, would be
210 -- redundant.
211 x2 = x `mod` 2^(24 :: Integer)
212 x3 = x `mod` 2^(16 :: Integer)
213 x4 = x `mod` 2^(8 :: Integer)
214 -- Perform right-shifts. x4 doesn't need a shift.
215 shifted_x1 = x `quot` 2^(24 :: Integer)
216 shifted_x2 = x2 `quot` 2^(16 :: Integer)
217 shifted_x3 = x3 `quot` 2^(8 :: Integer)
218
219
220 instance Enum IPv4Address where
221 -- We're supposed to throw a runtime error if you call (succ
222 -- maxBound), so the fromJust here doesn't introduce any additional
223 -- badness.
224 toEnum = fromJust . ipv4address_from_int
225 fromEnum = ipv4address_to_int
226
227 -- | Given two addresses, find the number of the most significant bit
228 -- where they differ. If the addresses are the same, return
229 -- Maskbits.Zero.
230 most_sig_bit_different :: IPv4Address -> IPv4Address -> Maskbits
231 most_sig_bit_different addr1 addr2
232 | addr1 == addr2 = Maskbits.Zero
233 | m1 /= n1 = Maskbits.One
234 | m2 /= n2 = Two
235 | m3 /= n3 = Three
236 | m4 /= n4 = Four
237 | m5 /= n5 = Five
238 | m6 /= n6 = Six
239 | m7 /= n7 = Seven
240 | m8 /= n8 = Eight
241 | m9 /= n9 = Nine
242 | m10 /= n10 = Ten
243 | m11 /= n11 = Eleven
244 | m12 /= n12 = Twelve
245 | m13 /= n13 = Thirteen
246 | m14 /= n14 = Fourteen
247 | m15 /= n15 = Fifteen
248 | m16 /= n16 = Sixteen
249 | m17 /= n17 = Seventeen
250 | m18 /= n18 = Eighteen
251 | m19 /= n19 = Nineteen
252 | m20 /= n20 = Twenty
253 | m21 /= n21 = TwentyOne
254 | m22 /= n22 = TwentyTwo
255 | m23 /= n23 = TwentyThree
256 | m24 /= n24 = TwentyFour
257 | m25 /= n25 = TwentyFive
258 | m26 /= n26 = TwentySix
259 | m27 /= n27 = TwentySeven
260 | m28 /= n28 = TwentyEight
261 | m29 /= n29 = TwentyNine
262 | m30 /= n30 = Thirty
263 | m31 /= n31 = ThirtyOne
264 | m32 /= n32 = ThirtyTwo
265 | otherwise = Maskbits.Zero
266 where
267 m1 = (b1 oct1a)
268 m2 = (b2 oct1a)
269 m3 = (b3 oct1a)
270 m4 = (b4 oct1a)
271 m5 = (b5 oct1a)
272 m6 = (b6 oct1a)
273 m7 = (b7 oct1a)
274 m8 = (b8 oct1a)
275 m9 = (b1 oct2a)
276 m10 = (b2 oct2a)
277 m11 = (b3 oct2a)
278 m12 = (b4 oct2a)
279 m13 = (b5 oct2a)
280 m14 = (b6 oct2a)
281 m15 = (b7 oct2a)
282 m16 = (b8 oct2a)
283 m17 = (b1 oct3a)
284 m18 = (b2 oct3a)
285 m19 = (b3 oct3a)
286 m20 = (b4 oct3a)
287 m21 = (b5 oct3a)
288 m22 = (b6 oct3a)
289 m23 = (b7 oct3a)
290 m24 = (b8 oct3a)
291 m25 = (b1 oct4a)
292 m26 = (b2 oct4a)
293 m27 = (b3 oct4a)
294 m28 = (b4 oct4a)
295 m29 = (b5 oct4a)
296 m30 = (b6 oct4a)
297 m31 = (b7 oct4a)
298 m32 = (b8 oct4a)
299 oct1a = (octet1 addr1)
300 oct2a = (octet2 addr1)
301 oct3a = (octet3 addr1)
302 oct4a = (octet4 addr1)
303 n1 = (b1 oct1b)
304 n2 = (b2 oct1b)
305 n3 = (b3 oct1b)
306 n4 = (b4 oct1b)
307 n5 = (b5 oct1b)
308 n6 = (b6 oct1b)
309 n7 = (b7 oct1b)
310 n8 = (b8 oct1b)
311 n9 = (b1 oct2b)
312 n10 = (b2 oct2b)
313 n11 = (b3 oct2b)
314 n12 = (b4 oct2b)
315 n13 = (b5 oct2b)
316 n14 = (b6 oct2b)
317 n15 = (b7 oct2b)
318 n16 = (b8 oct2b)
319 n17 = (b1 oct3b)
320 n18 = (b2 oct3b)
321 n19 = (b3 oct3b)
322 n20 = (b4 oct3b)
323 n21 = (b5 oct3b)
324 n22 = (b6 oct3b)
325 n23 = (b7 oct3b)
326 n24 = (b8 oct3b)
327 n25 = (b1 oct4b)
328 n26 = (b2 oct4b)
329 n27 = (b3 oct4b)
330 n28 = (b4 oct4b)
331 n29 = (b5 oct4b)
332 n30 = (b6 oct4b)
333 n31 = (b7 oct4b)
334 n32 = (b8 oct4b)
335 oct1b = (octet1 addr2)
336 oct2b = (octet2 addr2)
337 oct3b = (octet3 addr2)
338 oct4b = (octet4 addr2)
339
340
341 -- Test lists.
342 ipv4address_tests :: Test
343 ipv4address_tests =
344 testGroup "IPv4 Address Tests" [
345 test_enum,
346 test_maxBound,
347 test_minBound,
348 test_most_sig_bit_different1,
349 test_most_sig_bit_different2 ]
350
351 ipv4address_properties :: Test
352 ipv4address_properties =
353 testGroup
354 "IPv4 Address Properties "
355 [ testProperty
356 "fromEnum/toEnum are inverses"
357 prop_from_enum_to_enum_inverses ]
358
359 -- QuickCheck properties
360 prop_from_enum_to_enum_inverses :: Int -> Property
361 prop_from_enum_to_enum_inverses x =
362 (0 <= x) && (x <= 2^(32 :: Integer) - 1) ==>
363 fromEnum (toEnum x :: IPv4Address) == x
364
365 -- HUnit Tests
366 mk_testaddr :: Int -> Int -> Int -> Int -> IPv4Address
367 mk_testaddr a b c d =
368 IPv4Address oct1 oct2 oct3 oct4
369 where
370 oct1 = fromJust $ octet_from_int a
371 oct2 = fromJust $ octet_from_int b
372 oct3 = fromJust $ octet_from_int c
373 oct4 = fromJust $ octet_from_int d
374
375 test_minBound :: Test
376 test_minBound =
377 testCase desc $ assertEqual desc expected actual
378 where
379 desc = "minBound should be 0.0.0.0"
380 expected = mk_testaddr 0 0 0 0
381 actual = minBound :: IPv4Address
382
383 test_maxBound :: Test
384 test_maxBound =
385 testCase desc $ assertEqual desc expected actual
386 where
387 desc = "maxBound should be 255.255.255.255"
388 expected = mk_testaddr 255 255 255 255
389 actual = maxBound :: IPv4Address
390
391 test_enum :: Test
392 test_enum =
393 testCase desc $ assertEqual desc expected actual
394 where
395 desc = "enumerating a /24 gives the correct addresses"
396 expected = ["192.168.0." ++ (show x) | x <- [0..255::Int] ]
397 lb = mk_testaddr 192 168 0 0
398 ub = mk_testaddr 192 168 0 255
399 actual = map show [lb..ub]
400
401 test_most_sig_bit_different1 :: Test
402 test_most_sig_bit_different1 =
403 testCase desc $ assertEqual desc
404 TwentyFour
405 bit
406 where
407 desc = "10.1.1.0 and 10.1.0.0 differ in bit 24"
408 addr1 = mk_testaddr 10 1 1 0
409 addr2 = (mk_testaddr 10 1 0 0)
410 bit = most_sig_bit_different addr1 addr2
411
412
413
414 test_most_sig_bit_different2 :: Test
415 test_most_sig_bit_different2 =
416 testCase desc $ assertEqual desc
417 TwentyThree
418 bit
419 where
420 desc = "10.1.2.0 and 10.1.1.0 differ in bit 23"
421 addr1 = mk_testaddr 10 1 2 0
422 addr2 = mk_testaddr 10 1 1 0
423 bit = most_sig_bit_different addr1 addr2
424
425