]> gitweb.michael.orlitzky.com - dunshire.git/blob - test/symmetric_linear_game_test.py
Add the player2_start() method and some tests for it.
[dunshire.git] / test / symmetric_linear_game_test.py
1 """
2 Unit tests for the :class:`SymmetricLinearGame` class.
3 """
4
5 from unittest import TestCase
6
7 from dunshire.games import SymmetricLinearGame
8 from dunshire.matrices import eigenvalues_re, inner_product, norm
9 from dunshire import options
10 from .randomgen import (random_icecream_game, random_ll_icecream_game,
11 random_ll_orthant_game, random_nn_scaling,
12 random_orthant_game, random_positive_orthant_game,
13 random_translation)
14
15
16 # Tell pylint to shut up about the large number of methods.
17 class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
18 """
19 Tests for the SymmetricLinearGame and Solution classes.
20 """
21 def assert_within_tol(self, first, second, modifier=1):
22 """
23 Test that ``first`` and ``second`` are equal within a multiple of
24 our default tolerances.
25
26 Parameters
27 ----------
28
29 first : float
30 The first number to compare.
31
32 second : float
33 The second number to compare.
34
35 modifier : float
36 A scaling factor (default: 1) applied to the default
37 tolerance for this comparison. If you have a poorly-
38 conditioned matrix, for example, you may want to set this
39 greater than one.
40
41 """
42 self.assertTrue(abs(first - second) < options.ABS_TOL*modifier)
43
44
45 def test_solutions_dont_change_orthant(self):
46 G = random_orthant_game()
47 self.assert_solutions_dont_change(G)
48
49 def test_solutions_dont_change_icecream(self):
50 G = random_icecream_game()
51 self.assert_solutions_dont_change(G)
52
53 def assert_solutions_dont_change(self, G):
54 """
55 If we solve the same problem twice, we should get
56 the same answer both times.
57 """
58 soln1 = G.solution()
59 soln2 = G.solution()
60 p1_diff = norm(soln1.player1_optimal() - soln2.player1_optimal())
61 p2_diff = norm(soln1.player2_optimal() - soln2.player2_optimal())
62 gv_diff = abs(soln1.game_value() - soln2.game_value())
63
64 p1_close = p1_diff < options.ABS_TOL
65 p2_close = p2_diff < options.ABS_TOL
66 gv_close = gv_diff < options.ABS_TOL
67
68 self.assertTrue(p1_close and p2_close and gv_close)
69
70
71 def assert_player1_start_valid(self, G):
72 x = G.player1_start()['x']
73 s = G.player1_start()['s']
74 s1 = s[0:G.dimension()]
75 s2 = s[G.dimension():]
76 self.assert_within_tol(norm(G.A()*x - G.b()), 0)
77 self.assertTrue((s1,s2) in G.C())
78
79
80 def test_player1_start_valid_orthant(self):
81 """
82 Ensure that player one's starting point is in the orthant.
83 """
84 G = random_orthant_game()
85 self.assert_player1_start_valid(G)
86
87
88 def test_player1_start_valid_icecream(self):
89 """
90 Ensure that player one's starting point is in the ice-cream cone.
91 """
92 G = random_icecream_game()
93 self.assert_player1_start_valid(G)
94
95
96 def assert_player2_start_valid(self, G):
97 z = G.player2_start()['z']
98 z1 = z[0:G.dimension()]
99 z2 = z[G.dimension():]
100 self.assertTrue((z1,z2) in G.C())
101
102
103 def test_player2_start_valid_orthant(self):
104 """
105 Ensure that player two's starting point is in the orthant.
106 """
107 G = random_orthant_game()
108 self.assert_player2_start_valid(G)
109
110
111 def test_player2_start_valid_icecream(self):
112 """
113 Ensure that player two's starting point is in the ice-cream cone.
114 """
115 G = random_icecream_game()
116 self.assert_player2_start_valid(G)
117
118
119 def test_condition_lower_bound(self):
120 """
121 Ensure that the condition number of a game is greater than or
122 equal to one.
123
124 It should be safe to compare these floats directly: we compute
125 the condition number as the ratio of one nonnegative real number
126 to a smaller nonnegative real number.
127 """
128 G = random_orthant_game()
129 self.assertTrue(G.condition() >= 1.0)
130 G = random_icecream_game()
131 self.assertTrue(G.condition() >= 1.0)
132
133
134 def assert_scaling_works(self, G):
135 """
136 Test that scaling ``L`` by a nonnegative number scales the value
137 of the game by the same number.
138 """
139 (alpha, H) = random_nn_scaling(G)
140 value1 = G.solution().game_value()
141 value2 = H.solution().game_value()
142 modifier = 4*max(abs(alpha), 1)
143 self.assert_within_tol(alpha*value1, value2, modifier)
144
145
146 def test_scaling_orthant(self):
147 """
148 Test that scaling ``L`` by a nonnegative number scales the value
149 of the game by the same number over the nonnegative orthant.
150 """
151 G = random_orthant_game()
152 self.assert_scaling_works(G)
153
154
155 def test_scaling_icecream(self):
156 """
157 The same test as :meth:`test_nonnegative_scaling_orthant`,
158 except over the ice cream cone.
159 """
160 G = random_icecream_game()
161 self.assert_scaling_works(G)
162
163
164 def assert_translation_works(self, G):
165 """
166 Check that translating ``L`` by alpha*(e1*e2.trans()) increases
167 the value of the associated game by alpha.
168 """
169 # We need to use ``L`` later, so make sure we transpose it
170 # before passing it in as a column-indexed matrix.
171 soln1 = G.solution()
172 value1 = soln1.game_value()
173 x_bar = soln1.player1_optimal()
174 y_bar = soln1.player2_optimal()
175
176 # This is the "correct" representation of ``M``, but COLUMN
177 # indexed...
178 (alpha, H) = random_translation(G)
179 value2 = H.solution().game_value()
180
181 modifier = 4*max(abs(alpha), 1)
182 self.assert_within_tol(value1 + alpha, value2, modifier)
183
184 # Make sure the same optimal pair works.
185 self.assert_within_tol(value2, H.payoff(x_bar, y_bar), modifier)
186
187
188 def test_translation_orthant(self):
189 """
190 Test that translation works over the nonnegative orthant.
191 """
192 G = random_orthant_game()
193 self.assert_translation_works(G)
194
195
196 def test_translation_icecream(self):
197 """
198 The same as :meth:`test_translation_orthant`, except over the
199 ice cream cone.
200 """
201 G = random_icecream_game()
202 self.assert_translation_works(G)
203
204
205 def assert_opposite_game_works(self, G):
206 """
207 Check the value of the "opposite" game that gives rise to a
208 value that is the negation of the original game. Comes from
209 some corollary.
210 """
211 # This is the "correct" representation of ``M``, but
212 # COLUMN indexed...
213 M = -G.L().trans()
214
215 # so we have to transpose it when we feed it to the constructor.
216 # Note: the condition number of ``H`` should be comparable to ``G``.
217 H = SymmetricLinearGame(M.trans(), G.K(), G.e2(), G.e1())
218
219 soln1 = G.solution()
220 x_bar = soln1.player1_optimal()
221 y_bar = soln1.player2_optimal()
222 soln2 = H.solution()
223
224 # The modifier of 4 is because each could be off by 2*ABS_TOL,
225 # which is how far apart the primal/dual objectives have been
226 # observed being.
227 self.assert_within_tol(-soln1.game_value(), soln2.game_value(), 4)
228
229 # Make sure the switched optimal pair works. Since x_bar and
230 # y_bar come from G, we use the same modifier.
231 self.assert_within_tol(soln2.game_value(), H.payoff(y_bar, x_bar), 4)
232
233
234
235 def test_opposite_game_orthant(self):
236 """
237 Test the value of the "opposite" game over the nonnegative
238 orthant.
239 """
240 G = random_orthant_game()
241 self.assert_opposite_game_works(G)
242
243
244 def test_opposite_game_icecream(self):
245 """
246 Like :meth:`test_opposite_game_orthant`, except over the
247 ice-cream cone.
248 """
249 G = random_icecream_game()
250 self.assert_opposite_game_works(G)
251
252
253 def assert_orthogonality(self, G):
254 """
255 Two orthogonality relations hold at an optimal solution, and we
256 check them here.
257 """
258 soln = G.solution()
259 x_bar = soln.player1_optimal()
260 y_bar = soln.player2_optimal()
261 value = soln.game_value()
262
263 ip1 = inner_product(y_bar, G.L()*x_bar - value*G.e1())
264 ip2 = inner_product(value*G.e2() - G.L().trans()*y_bar, x_bar)
265
266 # Huh.. well, y_bar and x_bar can each be epsilon away, but
267 # x_bar is scaled by L, so that's (norm(L) + 1), and then
268 # value could be off by epsilon, so that's another norm(e1) or
269 # norm(e2). On the other hand, this test seems to pass most of
270 # the time even with a modifier of one. How about.. four?
271 self.assert_within_tol(ip1, 0, 4)
272 self.assert_within_tol(ip2, 0, 4)
273
274
275 def test_orthogonality_orthant(self):
276 """
277 Check the orthgonality relationships that hold for a solution
278 over the nonnegative orthant.
279 """
280 G = random_orthant_game()
281 self.assert_orthogonality(G)
282
283
284 def test_orthogonality_icecream(self):
285 """
286 Check the orthgonality relationships that hold for a solution
287 over the ice-cream cone.
288 """
289 G = random_icecream_game()
290 self.assert_orthogonality(G)
291
292
293 def test_positive_operator_value(self):
294 """
295 Test that a positive operator on the nonnegative orthant gives
296 rise to a a game with a nonnegative value.
297
298 This test theoretically applies to the ice-cream cone as well,
299 but we don't know how to make positive operators on that cone.
300 """
301 G = random_positive_orthant_game()
302 self.assertTrue(G.solution().game_value() >= -options.ABS_TOL)
303
304
305 def assert_lyapunov_works(self, G):
306 """
307 Check that Lyapunov games act the way we expect.
308 """
309 soln = G.solution()
310
311 # We only check for positive/negative stability if the game
312 # value is not basically zero. If the value is that close to
313 # zero, we just won't check any assertions.
314 #
315 # See :meth:`assert_within_tol` for an explanation of the
316 # fudge factors.
317 eigs = eigenvalues_re(G.L())
318
319 if soln.game_value() > options.ABS_TOL:
320 # L should be positive stable
321 positive_stable = all([eig > -options.ABS_TOL for eig in eigs])
322 self.assertTrue(positive_stable)
323 elif soln.game_value() < -options.ABS_TOL:
324 # L should be negative stable
325 negative_stable = all([eig < options.ABS_TOL for eig in eigs])
326 self.assertTrue(negative_stable)
327
328 # The dual game's value should always equal the primal's.
329 # The modifier of 4 is because even though the games are dual,
330 # CVXOPT doesn't know that, and each could be off by 2*ABS_TOL.
331 dualsoln = G.dual().solution()
332 self.assert_within_tol(dualsoln.game_value(), soln.game_value(), 4)
333
334
335 def test_lyapunov_orthant(self):
336 """
337 Test that a Lyapunov game on the nonnegative orthant works.
338 """
339 G = random_ll_orthant_game()
340 self.assert_lyapunov_works(G)
341
342
343 def test_lyapunov_icecream(self):
344 """
345 Test that a Lyapunov game on the ice-cream cone works.
346 """
347 G = random_ll_icecream_game()
348 self.assert_lyapunov_works(G)