]> gitweb.michael.orlitzky.com - dunshire.git/blob - src/dunshire/games.py
Attempt to recover from "unknown" solutions.
[dunshire.git] / src / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7
8 # These few are used only for tests.
9 from math import sqrt
10 from random import randint, uniform
11 from unittest import TestCase
12
13 # These are mostly actually needed.
14 from cvxopt import matrix, printing, solvers
15 from cones import CartesianProduct, IceCream, NonnegativeOrthant
16 from errors import GameUnsolvableException
17 from matrices import append_col, append_row, identity, inner_product
18 import options
19
20 printing.options['dformat'] = options.FLOAT_FORMAT
21 solvers.options['show_progress'] = options.VERBOSE
22
23
24 class Solution:
25 """
26 A representation of the solution of a linear game. It should contain
27 the value of the game, and both players' strategies.
28
29 Examples
30 --------
31
32 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
33 Game value: 10.0000000
34 Player 1 optimal:
35 [ 1]
36 [ 2]
37 Player 2 optimal:
38 [ 3]
39 [ 4]
40
41 """
42 def __init__(self, game_value, p1_optimal, p2_optimal):
43 """
44 Create a new Solution object from a game value and two optimal
45 strategies for the players.
46 """
47 self._game_value = game_value
48 self._player1_optimal = p1_optimal
49 self._player2_optimal = p2_optimal
50
51 def __str__(self):
52 """
53 Return a string describing the solution of a linear game.
54
55 The three data that are described are,
56
57 * The value of the game.
58 * The optimal strategy of player one.
59 * The optimal strategy of player two.
60
61 The two optimal strategy vectors are indented by two spaces.
62 """
63 tpl = 'Game value: {:.7f}\n' \
64 'Player 1 optimal:{:s}\n' \
65 'Player 2 optimal:{:s}'
66
67 p1_str = '\n{!s}'.format(self.player1_optimal())
68 p1_str = '\n '.join(p1_str.splitlines())
69 p2_str = '\n{!s}'.format(self.player2_optimal())
70 p2_str = '\n '.join(p2_str.splitlines())
71
72 return tpl.format(self.game_value(), p1_str, p2_str)
73
74
75 def game_value(self):
76 """
77 Return the game value for this solution.
78
79 Examples
80 --------
81
82 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
83 >>> s.game_value()
84 10
85
86 """
87 return self._game_value
88
89
90 def player1_optimal(self):
91 """
92 Return player one's optimal strategy in this solution.
93
94 Examples
95 --------
96
97 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
98 >>> print(s.player1_optimal())
99 [ 1]
100 [ 2]
101 <BLANKLINE>
102
103 """
104 return self._player1_optimal
105
106
107 def player2_optimal(self):
108 """
109 Return player two's optimal strategy in this solution.
110
111 Examples
112 --------
113
114 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
115 >>> print(s.player2_optimal())
116 [ 3]
117 [ 4]
118 <BLANKLINE>
119
120 """
121 return self._player2_optimal
122
123
124 class SymmetricLinearGame:
125 r"""
126 A representation of a symmetric linear game.
127
128 The data for a symmetric linear game are,
129
130 * A "payoff" operator ``L``.
131 * A symmetric cone ``K``.
132 * Two points ``e1`` and ``e2`` in the interior of ``K``.
133
134 The ambient space is assumed to be the span of ``K``.
135
136 With those data understood, the game is played as follows. Players
137 one and two choose points :math:`x` and :math:`y` respectively, from
138 their respective strategy sets,
139
140 .. math::
141 \begin{aligned}
142 \Delta_{1}
143 &=
144 \left\{
145 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
146 \right\}\\
147 \Delta_{2}
148 &=
149 \left\{
150 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
151 \right\}.
152 \end{aligned}
153
154 Afterwards, a "payout" is computed as :math:`\left\langle
155 L\left(x\right), y \right\rangle` and is paid to player one out of
156 player two's pocket. The game is therefore zero sum, and we suppose
157 that player one would like to guarantee himself the largest minimum
158 payout possible. That is, player one wishes to,
159
160 .. math::
161 \begin{aligned}
162 \text{maximize }
163 &\underset{y \in \Delta_{2}}{\min}\left(
164 \left\langle L\left(x\right), y \right\rangle
165 \right)\\
166 \text{subject to } & x \in \Delta_{1}.
167 \end{aligned}
168
169 Player two has the simultaneous goal to,
170
171 .. math::
172 \begin{aligned}
173 \text{minimize }
174 &\underset{x \in \Delta_{1}}{\max}\left(
175 \left\langle L\left(x\right), y \right\rangle
176 \right)\\
177 \text{subject to } & y \in \Delta_{2}.
178 \end{aligned}
179
180 These goals obviously conflict (the game is zero sum), but an
181 existence theorem guarantees at least one optimal min-max solution
182 from which neither player would like to deviate. This class is
183 able to find such a solution.
184
185 Parameters
186 ----------
187
188 L : list of list of float
189 A matrix represented as a list of ROWS. This representation
190 agrees with (for example) SageMath and NumPy, but not with CVXOPT
191 (whose matrix constructor accepts a list of columns).
192
193 K : :class:`SymmetricCone`
194 The symmetric cone instance over which the game is played.
195
196 e1 : iterable float
197 The interior point of ``K`` belonging to player one; it
198 can be of any iterable type having the correct length.
199
200 e2 : iterable float
201 The interior point of ``K`` belonging to player two; it
202 can be of any enumerable type having the correct length.
203
204 Raises
205 ------
206
207 ValueError
208 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
209
210 Examples
211 --------
212
213 >>> from cones import NonnegativeOrthant
214 >>> K = NonnegativeOrthant(3)
215 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
216 >>> e1 = [1,1,1]
217 >>> e2 = [1,2,3]
218 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
219 >>> print(SLG)
220 The linear game (L, K, e1, e2) where
221 L = [ 1 -5 -15]
222 [ -1 2 -3]
223 [-12 -15 1],
224 K = Nonnegative orthant in the real 3-space,
225 e1 = [ 1]
226 [ 1]
227 [ 1],
228 e2 = [ 1]
229 [ 2]
230 [ 3].
231
232 Lists can (and probably should) be used for every argument::
233
234 >>> from cones import NonnegativeOrthant
235 >>> K = NonnegativeOrthant(2)
236 >>> L = [[1,0],[0,1]]
237 >>> e1 = [1,1]
238 >>> e2 = [1,1]
239 >>> G = SymmetricLinearGame(L, K, e1, e2)
240 >>> print(G)
241 The linear game (L, K, e1, e2) where
242 L = [ 1 0]
243 [ 0 1],
244 K = Nonnegative orthant in the real 2-space,
245 e1 = [ 1]
246 [ 1],
247 e2 = [ 1]
248 [ 1].
249
250 The points ``e1`` and ``e2`` can also be passed as some other
251 enumerable type (of the correct length) without much harm, since
252 there is no row/column ambiguity::
253
254 >>> import cvxopt
255 >>> import numpy
256 >>> from cones import NonnegativeOrthant
257 >>> K = NonnegativeOrthant(2)
258 >>> L = [[1,0],[0,1]]
259 >>> e1 = cvxopt.matrix([1,1])
260 >>> e2 = numpy.matrix([1,1])
261 >>> G = SymmetricLinearGame(L, K, e1, e2)
262 >>> print(G)
263 The linear game (L, K, e1, e2) where
264 L = [ 1 0]
265 [ 0 1],
266 K = Nonnegative orthant in the real 2-space,
267 e1 = [ 1]
268 [ 1],
269 e2 = [ 1]
270 [ 1].
271
272 However, ``L`` will always be intepreted as a list of rows, even
273 if it is passed as a :class:`cvxopt.base.matrix` which is
274 otherwise indexed by columns::
275
276 >>> import cvxopt
277 >>> from cones import NonnegativeOrthant
278 >>> K = NonnegativeOrthant(2)
279 >>> L = [[1,2],[3,4]]
280 >>> e1 = [1,1]
281 >>> e2 = e1
282 >>> G = SymmetricLinearGame(L, K, e1, e2)
283 >>> print(G)
284 The linear game (L, K, e1, e2) where
285 L = [ 1 2]
286 [ 3 4],
287 K = Nonnegative orthant in the real 2-space,
288 e1 = [ 1]
289 [ 1],
290 e2 = [ 1]
291 [ 1].
292 >>> L = cvxopt.matrix(L)
293 >>> print(L)
294 [ 1 3]
295 [ 2 4]
296 <BLANKLINE>
297 >>> G = SymmetricLinearGame(L, K, e1, e2)
298 >>> print(G)
299 The linear game (L, K, e1, e2) where
300 L = [ 1 2]
301 [ 3 4],
302 K = Nonnegative orthant in the real 2-space,
303 e1 = [ 1]
304 [ 1],
305 e2 = [ 1]
306 [ 1].
307
308 """
309 def __init__(self, L, K, e1, e2):
310 """
311 Create a new SymmetricLinearGame object.
312 """
313 self._K = K
314 self._e1 = matrix(e1, (K.dimension(), 1))
315 self._e2 = matrix(e2, (K.dimension(), 1))
316
317 # Our input ``L`` is indexed by rows but CVXOPT matrices are
318 # indexed by columns, so we need to transpose the input before
319 # feeding it to CVXOPT.
320 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
321
322 if not self._e1 in K:
323 raise ValueError('the point e1 must lie in the interior of K')
324
325 if not self._e2 in K:
326 raise ValueError('the point e2 must lie in the interior of K')
327
328 def __str__(self):
329 """
330 Return a string representation of this game.
331 """
332 tpl = 'The linear game (L, K, e1, e2) where\n' \
333 ' L = {:s},\n' \
334 ' K = {!s},\n' \
335 ' e1 = {:s},\n' \
336 ' e2 = {:s}.'
337 indented_L = '\n '.join(str(self._L).splitlines())
338 indented_e1 = '\n '.join(str(self._e1).splitlines())
339 indented_e2 = '\n '.join(str(self._e2).splitlines())
340 return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
341
342
343 def solution(self):
344 """
345 Solve this linear game and return a :class:`Solution`.
346
347 Returns
348 -------
349
350 :class:`Solution`
351 A :class:`Solution` object describing the game's value and
352 the optimal strategies of both players.
353
354 Raises
355 ------
356 GameUnsolvableException
357 If the game could not be solved (if an optimal solution to its
358 associated cone program was not found).
359
360 Examples
361 --------
362
363 This example is computed in Gowda and Ravindran in the section
364 "The value of a Z-transformation"::
365
366 >>> from cones import NonnegativeOrthant
367 >>> K = NonnegativeOrthant(3)
368 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
369 >>> e1 = [1,1,1]
370 >>> e2 = [1,1,1]
371 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
372 >>> print(SLG.solution())
373 Game value: -6.1724138
374 Player 1 optimal:
375 [ 0.5517241]
376 [-0.0000000]
377 [ 0.4482759]
378 Player 2 optimal:
379 [0.4482759]
380 [0.0000000]
381 [0.5517241]
382
383 The value of the following game can be computed using the fact
384 that the identity is invertible::
385
386 >>> from cones import NonnegativeOrthant
387 >>> K = NonnegativeOrthant(3)
388 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
389 >>> e1 = [1,2,3]
390 >>> e2 = [4,5,6]
391 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
392 >>> print(SLG.solution())
393 Game value: 0.0312500
394 Player 1 optimal:
395 [0.0312500]
396 [0.0625000]
397 [0.0937500]
398 Player 2 optimal:
399 [0.1250000]
400 [0.1562500]
401 [0.1875000]
402
403 """
404 # The cone "C" that appears in the statement of the CVXOPT
405 # conelp program.
406 C = CartesianProduct(self._K, self._K)
407
408 # The column vector "b" that appears on the right-hand side of
409 # Ax = b in the statement of the CVXOPT conelp program.
410 b = matrix([1], tc='d')
411
412 # A column of zeros that fits K.
413 zero = matrix(0, (self._K.dimension(), 1), tc='d')
414
415 # The column vector "h" that appears on the right-hand side of
416 # Gx + s = h in the statement of the CVXOPT conelp program.
417 h = matrix([zero, zero])
418
419 # The column vector "c" that appears in the objective function
420 # value <c,x> in the statement of the CVXOPT conelp program.
421 c = matrix([-1, zero])
422
423 # The matrix "G" that appears on the left-hand side of Gx + s = h
424 # in the statement of the CVXOPT conelp program.
425 G = append_row(append_col(zero, -identity(self._K.dimension())),
426 append_col(self._e1, -self._L))
427
428 # The matrix "A" that appears on the right-hand side of Ax = b
429 # in the statement of the CVXOPT conelp program.
430 A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
431
432 # Actually solve the thing and obtain a dictionary describing
433 # what happened.
434 soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
435
436 p1_value = -soln_dict['primal objective']
437 p2_value = -soln_dict['dual objective']
438 p1_optimal = soln_dict['x'][1:]
439 p2_optimal = soln_dict['z'][self._K.dimension():]
440
441 # The "status" field contains "optimal" if everything went
442 # according to plan. Other possible values are "primal
443 # infeasible", "dual infeasible", "unknown", all of which mean
444 # we didn't get a solution. The "infeasible" ones are the
445 # worst, since they indicate that CVXOPT is convinced the
446 # problem is infeasible (and that cannot happen).
447 if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
448 raise GameUnsolvableException(soln_dict)
449 elif soln_dict['status'] == 'unknown':
450 # When we get a status of "unknown", we may still be able
451 # to salvage a solution out of the returned
452 # dictionary. Often this is the result of numerical
453 # difficulty and we can simply check that the primal/dual
454 # objectives match (within a tolerance) and that the
455 # primal/dual optimal solutions are within the cone (to a
456 # tolerance as well).
457 if (abs(p1_value - p2_value) > options.ABS_TOL):
458 raise GameUnsolvableException(soln_dict)
459 if (p1_optimal not in self._K) or (p2_optimal not in self._K):
460 raise GameUnsolvableException(soln_dict)
461
462 return Solution(p1_value, p1_optimal, p2_optimal)
463
464
465 def dual(self):
466 r"""
467 Return the dual game to this game.
468
469 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
470 then its dual is :math:`G^{*} =
471 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
472 is symmetric, :math:`K^{*} = K`.
473
474 Examples
475 --------
476
477 >>> from cones import NonnegativeOrthant
478 >>> K = NonnegativeOrthant(3)
479 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
480 >>> e1 = [1,1,1]
481 >>> e2 = [1,2,3]
482 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
483 >>> print(SLG.dual())
484 The linear game (L, K, e1, e2) where
485 L = [ 1 -1 -12]
486 [ -5 2 -15]
487 [-15 -3 1],
488 K = Nonnegative orthant in the real 3-space,
489 e1 = [ 1]
490 [ 2]
491 [ 3],
492 e2 = [ 1]
493 [ 1]
494 [ 1].
495
496 """
497 # We pass ``self._L`` right back into the constructor, because
498 # it will be transposed there. And keep in mind that ``self._K``
499 # is its own dual.
500 return SymmetricLinearGame(self._L,
501 self._K,
502 self._e2,
503 self._e1)
504
505
506 class SymmetricLinearGameTest(TestCase):
507 """
508 Tests for the SymmetricLinearGame and Solution classes.
509 """
510
511 def random_orthant_params(self):
512 """
513 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
514 random game over the nonnegative orthant.
515 """
516 ambient_dim = randint(1, 10)
517 K = NonnegativeOrthant(ambient_dim)
518 e1 = [uniform(0.1, 10) for idx in range(K.dimension())]
519 e2 = [uniform(0.1, 10) for idx in range(K.dimension())]
520 L = [[uniform(-10, 10) for i in range(K.dimension())]
521 for j in range(K.dimension())]
522 return (L, K, e1, e2)
523
524
525 def random_icecream_params(self):
526 """
527 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
528 random game over the ice cream cone.
529 """
530 # Use a minimum dimension of two to avoid divide-by-zero in
531 # the fudge factor we make up later.
532 ambient_dim = randint(2, 10)
533 K = IceCream(ambient_dim)
534 e1 = [1] # Set the "height" of e1 to one
535 e2 = [1] # And the same for e2
536
537 # If we choose the rest of the components of e1,e2 randomly
538 # between 0 and 1, then the largest the squared norm of the
539 # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
540 # need to make it less than one (the height of the cone) so
541 # that the whole thing is in the cone. The norm of the
542 # non-height part is sqrt(dim(K) - 1), and we can divide by
543 # twice that.
544 fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
545 e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
546 e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
547 L = [[uniform(-10, 10) for i in range(K.dimension())]
548 for j in range(K.dimension())]
549
550 return (L, K, e1, e2)
551
552
553 def assert_within_tol(self, first, second):
554 """
555 Test that ``first`` and ``second`` are equal within our default
556 tolerance.
557 """
558 self.assertTrue(abs(first - second) < options.ABS_TOL)
559
560
561 def assert_solution_exists(self, L, K, e1, e2):
562 """
563 Given the parameters needed to construct a SymmetricLinearGame,
564 ensure that that game has a solution.
565 """
566 G = SymmetricLinearGame(L, K, e1, e2)
567 soln = G.solution()
568 L_matrix = matrix(L).trans()
569 expected = inner_product(L_matrix*soln.player1_optimal(),
570 soln.player2_optimal())
571 self.assert_within_tol(soln.game_value(), expected)
572
573 def test_solution_exists_nonnegative_orthant(self):
574 """
575 Every linear game has a solution, so we should be able to solve
576 every symmetric linear game over the NonnegativeOrthant. Pick
577 some parameters randomly and give it a shot. The resulting
578 optimal solutions should give us the optimal game value when we
579 apply the payoff operator to them.
580 """
581 (L, K, e1, e2) = self.random_orthant_params()
582 self.assert_solution_exists(L, K, e1, e2)
583
584 def test_solution_exists_ice_cream(self):
585 """
586 Like :meth:`test_solution_exists_nonnegative_orthant`, except
587 over the ice cream cone.
588 """
589 (L, K, e1, e2) = self.random_icecream_params()
590 self.assert_solution_exists(L, K, e1, e2)
591
592
593 def test_negative_value_Z_operator(self):
594 """
595 Test the example given in Gowda/Ravindran of a Z-matrix with
596 negative game value on the nonnegative orthant.
597 """
598 K = NonnegativeOrthant(2)
599 e1 = [1,1]
600 e2 = e1
601 L = [[1,-2],[-2,1]]
602 G = SymmetricLinearGame(L, K, e1, e2)
603 self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
604
605
606 def test_nonnegative_scaling_orthant(self):
607 """
608 Test that scaling ``L`` by a nonnegative number scales the value
609 of the game by the same number. Use the nonnegative orthant as
610 our cone.
611 """
612 (L, K, e1, e2) = self.random_orthant_params()
613 L = matrix(L) # So that we can scale it by alpha below.
614 G1 = SymmetricLinearGame(L, K, e1, e2)
615 value1 = G1.solution().game_value()
616 alpha = uniform(0.1, 10)
617
618 G2 = SymmetricLinearGame(alpha*L, K, e1, e2)
619 value2 = G2.solution().game_value()
620 self.assert_within_tol(alpha*value1, value2)
621
622
623 def test_nonnegative_scaling_icecream(self):
624 """
625 The same test as :meth:`test_nonnegative_scaling_orthant`,
626 except over the ice cream cone.
627 """
628 (L, K, e1, e2) = self.random_icecream_params()
629 L = matrix(L) # So that we can scale it by alpha below.
630
631 G1 = SymmetricLinearGame(L, K, e1, e2)
632 value1 = G1.solution().game_value()
633 alpha = uniform(0.1, 10)
634
635 G2 = SymmetricLinearGame(alpha*L, K, e1, e2)
636 value2 = G2.solution().game_value()
637 self.assert_within_tol(alpha*value1, value2)
638