]> gitweb.michael.orlitzky.com - dunshire.git/blob - src/dunshire/games.py
Test the dual game value of a Lyapunov game over the orthant.
[dunshire.git] / src / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7
8 # These few are used only for tests.
9 from math import sqrt
10 from random import randint, uniform
11 from unittest import TestCase
12
13 # These are mostly actually needed.
14 from cvxopt import matrix, printing, solvers
15 from cones import CartesianProduct, IceCream, NonnegativeOrthant
16 from errors import GameUnsolvableException
17 from matrices import (append_col, append_row, eigenvalues_re, identity,
18 inner_product, norm)
19 import options
20
21 printing.options['dformat'] = options.FLOAT_FORMAT
22 solvers.options['show_progress'] = options.VERBOSE
23
24
25 class Solution:
26 """
27 A representation of the solution of a linear game. It should contain
28 the value of the game, and both players' strategies.
29
30 Examples
31 --------
32
33 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
34 Game value: 10.0000000
35 Player 1 optimal:
36 [ 1]
37 [ 2]
38 Player 2 optimal:
39 [ 3]
40 [ 4]
41
42 """
43 def __init__(self, game_value, p1_optimal, p2_optimal):
44 """
45 Create a new Solution object from a game value and two optimal
46 strategies for the players.
47 """
48 self._game_value = game_value
49 self._player1_optimal = p1_optimal
50 self._player2_optimal = p2_optimal
51
52 def __str__(self):
53 """
54 Return a string describing the solution of a linear game.
55
56 The three data that are described are,
57
58 * The value of the game.
59 * The optimal strategy of player one.
60 * The optimal strategy of player two.
61
62 The two optimal strategy vectors are indented by two spaces.
63 """
64 tpl = 'Game value: {:.7f}\n' \
65 'Player 1 optimal:{:s}\n' \
66 'Player 2 optimal:{:s}'
67
68 p1_str = '\n{!s}'.format(self.player1_optimal())
69 p1_str = '\n '.join(p1_str.splitlines())
70 p2_str = '\n{!s}'.format(self.player2_optimal())
71 p2_str = '\n '.join(p2_str.splitlines())
72
73 return tpl.format(self.game_value(), p1_str, p2_str)
74
75
76 def game_value(self):
77 """
78 Return the game value for this solution.
79
80 Examples
81 --------
82
83 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
84 >>> s.game_value()
85 10
86
87 """
88 return self._game_value
89
90
91 def player1_optimal(self):
92 """
93 Return player one's optimal strategy in this solution.
94
95 Examples
96 --------
97
98 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
99 >>> print(s.player1_optimal())
100 [ 1]
101 [ 2]
102 <BLANKLINE>
103
104 """
105 return self._player1_optimal
106
107
108 def player2_optimal(self):
109 """
110 Return player two's optimal strategy in this solution.
111
112 Examples
113 --------
114
115 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
116 >>> print(s.player2_optimal())
117 [ 3]
118 [ 4]
119 <BLANKLINE>
120
121 """
122 return self._player2_optimal
123
124
125 class SymmetricLinearGame:
126 r"""
127 A representation of a symmetric linear game.
128
129 The data for a symmetric linear game are,
130
131 * A "payoff" operator ``L``.
132 * A symmetric cone ``K``.
133 * Two points ``e1`` and ``e2`` in the interior of ``K``.
134
135 The ambient space is assumed to be the span of ``K``.
136
137 With those data understood, the game is played as follows. Players
138 one and two choose points :math:`x` and :math:`y` respectively, from
139 their respective strategy sets,
140
141 .. math::
142 \begin{aligned}
143 \Delta_{1}
144 &=
145 \left\{
146 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
147 \right\}\\
148 \Delta_{2}
149 &=
150 \left\{
151 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
152 \right\}.
153 \end{aligned}
154
155 Afterwards, a "payout" is computed as :math:`\left\langle
156 L\left(x\right), y \right\rangle` and is paid to player one out of
157 player two's pocket. The game is therefore zero sum, and we suppose
158 that player one would like to guarantee himself the largest minimum
159 payout possible. That is, player one wishes to,
160
161 .. math::
162 \begin{aligned}
163 \text{maximize }
164 &\underset{y \in \Delta_{2}}{\min}\left(
165 \left\langle L\left(x\right), y \right\rangle
166 \right)\\
167 \text{subject to } & x \in \Delta_{1}.
168 \end{aligned}
169
170 Player two has the simultaneous goal to,
171
172 .. math::
173 \begin{aligned}
174 \text{minimize }
175 &\underset{x \in \Delta_{1}}{\max}\left(
176 \left\langle L\left(x\right), y \right\rangle
177 \right)\\
178 \text{subject to } & y \in \Delta_{2}.
179 \end{aligned}
180
181 These goals obviously conflict (the game is zero sum), but an
182 existence theorem guarantees at least one optimal min-max solution
183 from which neither player would like to deviate. This class is
184 able to find such a solution.
185
186 Parameters
187 ----------
188
189 L : list of list of float
190 A matrix represented as a list of ROWS. This representation
191 agrees with (for example) SageMath and NumPy, but not with CVXOPT
192 (whose matrix constructor accepts a list of columns).
193
194 K : :class:`SymmetricCone`
195 The symmetric cone instance over which the game is played.
196
197 e1 : iterable float
198 The interior point of ``K`` belonging to player one; it
199 can be of any iterable type having the correct length.
200
201 e2 : iterable float
202 The interior point of ``K`` belonging to player two; it
203 can be of any enumerable type having the correct length.
204
205 Raises
206 ------
207
208 ValueError
209 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
210
211 Examples
212 --------
213
214 >>> from cones import NonnegativeOrthant
215 >>> K = NonnegativeOrthant(3)
216 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
217 >>> e1 = [1,1,1]
218 >>> e2 = [1,2,3]
219 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
220 >>> print(SLG)
221 The linear game (L, K, e1, e2) where
222 L = [ 1 -5 -15]
223 [ -1 2 -3]
224 [-12 -15 1],
225 K = Nonnegative orthant in the real 3-space,
226 e1 = [ 1]
227 [ 1]
228 [ 1],
229 e2 = [ 1]
230 [ 2]
231 [ 3].
232
233 Lists can (and probably should) be used for every argument::
234
235 >>> from cones import NonnegativeOrthant
236 >>> K = NonnegativeOrthant(2)
237 >>> L = [[1,0],[0,1]]
238 >>> e1 = [1,1]
239 >>> e2 = [1,1]
240 >>> G = SymmetricLinearGame(L, K, e1, e2)
241 >>> print(G)
242 The linear game (L, K, e1, e2) where
243 L = [ 1 0]
244 [ 0 1],
245 K = Nonnegative orthant in the real 2-space,
246 e1 = [ 1]
247 [ 1],
248 e2 = [ 1]
249 [ 1].
250
251 The points ``e1`` and ``e2`` can also be passed as some other
252 enumerable type (of the correct length) without much harm, since
253 there is no row/column ambiguity::
254
255 >>> import cvxopt
256 >>> import numpy
257 >>> from cones import NonnegativeOrthant
258 >>> K = NonnegativeOrthant(2)
259 >>> L = [[1,0],[0,1]]
260 >>> e1 = cvxopt.matrix([1,1])
261 >>> e2 = numpy.matrix([1,1])
262 >>> G = SymmetricLinearGame(L, K, e1, e2)
263 >>> print(G)
264 The linear game (L, K, e1, e2) where
265 L = [ 1 0]
266 [ 0 1],
267 K = Nonnegative orthant in the real 2-space,
268 e1 = [ 1]
269 [ 1],
270 e2 = [ 1]
271 [ 1].
272
273 However, ``L`` will always be intepreted as a list of rows, even
274 if it is passed as a :class:`cvxopt.base.matrix` which is
275 otherwise indexed by columns::
276
277 >>> import cvxopt
278 >>> from cones import NonnegativeOrthant
279 >>> K = NonnegativeOrthant(2)
280 >>> L = [[1,2],[3,4]]
281 >>> e1 = [1,1]
282 >>> e2 = e1
283 >>> G = SymmetricLinearGame(L, K, e1, e2)
284 >>> print(G)
285 The linear game (L, K, e1, e2) where
286 L = [ 1 2]
287 [ 3 4],
288 K = Nonnegative orthant in the real 2-space,
289 e1 = [ 1]
290 [ 1],
291 e2 = [ 1]
292 [ 1].
293 >>> L = cvxopt.matrix(L)
294 >>> print(L)
295 [ 1 3]
296 [ 2 4]
297 <BLANKLINE>
298 >>> G = SymmetricLinearGame(L, K, e1, e2)
299 >>> print(G)
300 The linear game (L, K, e1, e2) where
301 L = [ 1 2]
302 [ 3 4],
303 K = Nonnegative orthant in the real 2-space,
304 e1 = [ 1]
305 [ 1],
306 e2 = [ 1]
307 [ 1].
308
309 """
310 def __init__(self, L, K, e1, e2):
311 """
312 Create a new SymmetricLinearGame object.
313 """
314 self._K = K
315 self._e1 = matrix(e1, (K.dimension(), 1))
316 self._e2 = matrix(e2, (K.dimension(), 1))
317
318 # Our input ``L`` is indexed by rows but CVXOPT matrices are
319 # indexed by columns, so we need to transpose the input before
320 # feeding it to CVXOPT.
321 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
322
323 if not self._e1 in K:
324 raise ValueError('the point e1 must lie in the interior of K')
325
326 if not self._e2 in K:
327 raise ValueError('the point e2 must lie in the interior of K')
328
329 def __str__(self):
330 """
331 Return a string representation of this game.
332 """
333 tpl = 'The linear game (L, K, e1, e2) where\n' \
334 ' L = {:s},\n' \
335 ' K = {!s},\n' \
336 ' e1 = {:s},\n' \
337 ' e2 = {:s}.'
338 indented_L = '\n '.join(str(self._L).splitlines())
339 indented_e1 = '\n '.join(str(self._e1).splitlines())
340 indented_e2 = '\n '.join(str(self._e2).splitlines())
341 return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
342
343
344 def solution(self):
345 """
346 Solve this linear game and return a :class:`Solution`.
347
348 Returns
349 -------
350
351 :class:`Solution`
352 A :class:`Solution` object describing the game's value and
353 the optimal strategies of both players.
354
355 Raises
356 ------
357 GameUnsolvableException
358 If the game could not be solved (if an optimal solution to its
359 associated cone program was not found).
360
361 Examples
362 --------
363
364 This example is computed in Gowda and Ravindran in the section
365 "The value of a Z-transformation"::
366
367 >>> from cones import NonnegativeOrthant
368 >>> K = NonnegativeOrthant(3)
369 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
370 >>> e1 = [1,1,1]
371 >>> e2 = [1,1,1]
372 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
373 >>> print(SLG.solution())
374 Game value: -6.1724138
375 Player 1 optimal:
376 [ 0.5517241]
377 [-0.0000000]
378 [ 0.4482759]
379 Player 2 optimal:
380 [0.4482759]
381 [0.0000000]
382 [0.5517241]
383
384 The value of the following game can be computed using the fact
385 that the identity is invertible::
386
387 >>> from cones import NonnegativeOrthant
388 >>> K = NonnegativeOrthant(3)
389 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
390 >>> e1 = [1,2,3]
391 >>> e2 = [4,5,6]
392 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
393 >>> print(SLG.solution())
394 Game value: 0.0312500
395 Player 1 optimal:
396 [0.0312500]
397 [0.0625000]
398 [0.0937500]
399 Player 2 optimal:
400 [0.1250000]
401 [0.1562500]
402 [0.1875000]
403
404 """
405 # The cone "C" that appears in the statement of the CVXOPT
406 # conelp program.
407 C = CartesianProduct(self._K, self._K)
408
409 # The column vector "b" that appears on the right-hand side of
410 # Ax = b in the statement of the CVXOPT conelp program.
411 b = matrix([1], tc='d')
412
413 # A column of zeros that fits K.
414 zero = matrix(0, (self._K.dimension(), 1), tc='d')
415
416 # The column vector "h" that appears on the right-hand side of
417 # Gx + s = h in the statement of the CVXOPT conelp program.
418 h = matrix([zero, zero])
419
420 # The column vector "c" that appears in the objective function
421 # value <c,x> in the statement of the CVXOPT conelp program.
422 c = matrix([-1, zero])
423
424 # The matrix "G" that appears on the left-hand side of Gx + s = h
425 # in the statement of the CVXOPT conelp program.
426 G = append_row(append_col(zero, -identity(self._K.dimension())),
427 append_col(self._e1, -self._L))
428
429 # The matrix "A" that appears on the right-hand side of Ax = b
430 # in the statement of the CVXOPT conelp program.
431 A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
432
433 # Actually solve the thing and obtain a dictionary describing
434 # what happened.
435 soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
436
437 p1_value = -soln_dict['primal objective']
438 p2_value = -soln_dict['dual objective']
439 p1_optimal = soln_dict['x'][1:]
440 p2_optimal = soln_dict['z'][self._K.dimension():]
441
442 # The "status" field contains "optimal" if everything went
443 # according to plan. Other possible values are "primal
444 # infeasible", "dual infeasible", "unknown", all of which mean
445 # we didn't get a solution. The "infeasible" ones are the
446 # worst, since they indicate that CVXOPT is convinced the
447 # problem is infeasible (and that cannot happen).
448 if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
449 raise GameUnsolvableException(soln_dict)
450 elif soln_dict['status'] == 'unknown':
451 # When we get a status of "unknown", we may still be able
452 # to salvage a solution out of the returned
453 # dictionary. Often this is the result of numerical
454 # difficulty and we can simply check that the primal/dual
455 # objectives match (within a tolerance) and that the
456 # primal/dual optimal solutions are within the cone (to a
457 # tolerance as well).
458 if abs(p1_value - p2_value) > options.ABS_TOL:
459 raise GameUnsolvableException(soln_dict)
460 if (p1_optimal not in self._K) or (p2_optimal not in self._K):
461 raise GameUnsolvableException(soln_dict)
462
463 return Solution(p1_value, p1_optimal, p2_optimal)
464
465
466 def dual(self):
467 r"""
468 Return the dual game to this game.
469
470 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
471 then its dual is :math:`G^{*} =
472 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
473 is symmetric, :math:`K^{*} = K`.
474
475 Examples
476 --------
477
478 >>> from cones import NonnegativeOrthant
479 >>> K = NonnegativeOrthant(3)
480 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
481 >>> e1 = [1,1,1]
482 >>> e2 = [1,2,3]
483 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
484 >>> print(SLG.dual())
485 The linear game (L, K, e1, e2) where
486 L = [ 1 -1 -12]
487 [ -5 2 -15]
488 [-15 -3 1],
489 K = Nonnegative orthant in the real 3-space,
490 e1 = [ 1]
491 [ 2]
492 [ 3],
493 e2 = [ 1]
494 [ 1]
495 [ 1].
496
497 """
498 # We pass ``self._L`` right back into the constructor, because
499 # it will be transposed there. And keep in mind that ``self._K``
500 # is its own dual.
501 return SymmetricLinearGame(self._L,
502 self._K,
503 self._e2,
504 self._e1)
505
506
507
508 def _random_matrix(dims):
509 """
510 Generate a random square (``dims``-by-``dims``) matrix,
511 represented as a list of rows. This is used only by the
512 :class:`SymmetricLinearGameTest` class.
513 """
514 return [[uniform(-10, 10) for i in range(dims)] for j in range(dims)]
515
516 def _random_nonnegative_matrix(dims):
517 """
518 Generate a random square (``dims``-by-``dims``) matrix with
519 nonnegative entries, represented as a list of rows. This is used
520 only by the :class:`SymmetricLinearGameTest` class.
521 """
522 L = _random_matrix(dims)
523 return [[abs(entry) for entry in row] for row in L]
524
525 def _random_diagonal_matrix(dims):
526 """
527 Generate a random square (``dims``-by-``dims``) matrix with nonzero
528 entries only on the diagonal, represented as a list of rows. This is
529 used only by the :class:`SymmetricLinearGameTest` class.
530 """
531 return [[uniform(-10, 10)*int(i == j) for i in range(dims)]
532 for j in range(dims)]
533
534 def _random_orthant_params():
535 """
536 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
537 random game over the nonnegative orthant. This is only used by
538 the :class:`SymmetricLinearGameTest` class.
539 """
540 ambient_dim = randint(1, 10)
541 K = NonnegativeOrthant(ambient_dim)
542 e1 = [uniform(0.5, 10) for idx in range(K.dimension())]
543 e2 = [uniform(0.5, 10) for idx in range(K.dimension())]
544 L = _random_matrix(K.dimension())
545 return (L, K, e1, e2)
546
547
548 def _random_icecream_params():
549 """
550 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
551 random game over the ice cream cone. This is only used by
552 the :class:`SymmetricLinearGameTest` class.
553 """
554 # Use a minimum dimension of two to avoid divide-by-zero in
555 # the fudge factor we make up later.
556 ambient_dim = randint(2, 10)
557 K = IceCream(ambient_dim)
558 e1 = [1] # Set the "height" of e1 to one
559 e2 = [1] # And the same for e2
560
561 # If we choose the rest of the components of e1,e2 randomly
562 # between 0 and 1, then the largest the squared norm of the
563 # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
564 # need to make it less than one (the height of the cone) so
565 # that the whole thing is in the cone. The norm of the
566 # non-height part is sqrt(dim(K) - 1), and we can divide by
567 # twice that.
568 fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
569 e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
570 e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
571 L = _random_matrix(K.dimension())
572
573 return (L, K, e1, e2)
574
575
576 class SymmetricLinearGameTest(TestCase):
577 """
578 Tests for the SymmetricLinearGame and Solution classes.
579 """
580 def assert_within_tol(self, first, second):
581 """
582 Test that ``first`` and ``second`` are equal within our default
583 tolerance.
584 """
585 self.assertTrue(abs(first - second) < options.ABS_TOL)
586
587
588 def assert_norm_within_tol(self, first, second):
589 """
590 Test that ``first`` and ``second`` vectors are equal in the
591 sense that the norm of their difference is within our default
592 tolerance.
593 """
594 self.assert_within_tol(norm(first - second), 0)
595
596
597 def assert_solution_exists(self, L, K, e1, e2):
598 """
599 Given the parameters needed to construct a SymmetricLinearGame,
600 ensure that that game has a solution.
601 """
602 G = SymmetricLinearGame(L, K, e1, e2)
603 soln = G.solution()
604
605 # The matrix() constructor assumes that ``L`` is a list of
606 # columns, so we transpose it to agree with what
607 # SymmetricLinearGame() thinks.
608 L_matrix = matrix(L).trans()
609 expected = inner_product(L_matrix*soln.player1_optimal(),
610 soln.player2_optimal())
611 self.assert_within_tol(soln.game_value(), expected)
612
613
614 def test_solution_exists_orthant(self):
615 """
616 Every linear game has a solution, so we should be able to solve
617 every symmetric linear game over the NonnegativeOrthant. Pick
618 some parameters randomly and give it a shot. The resulting
619 optimal solutions should give us the optimal game value when we
620 apply the payoff operator to them.
621 """
622 (L, K, e1, e2) = _random_orthant_params()
623 self.assert_solution_exists(L, K, e1, e2)
624
625
626 def test_solution_exists_icecream(self):
627 """
628 Like :meth:`test_solution_exists_nonnegative_orthant`, except
629 over the ice cream cone.
630 """
631 (L, K, e1, e2) = _random_icecream_params()
632 self.assert_solution_exists(L, K, e1, e2)
633
634
635 def test_negative_value_z_operator(self):
636 """
637 Test the example given in Gowda/Ravindran of a Z-matrix with
638 negative game value on the nonnegative orthant.
639 """
640 K = NonnegativeOrthant(2)
641 e1 = [1, 1]
642 e2 = e1
643 L = [[1, -2], [-2, 1]]
644 G = SymmetricLinearGame(L, K, e1, e2)
645 self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
646
647
648 def assert_scaling_works(self, L, K, e1, e2):
649 """
650 Test that scaling ``L`` by a nonnegative number scales the value
651 of the game by the same number.
652 """
653 # Make ``L`` a matrix so that we can scale it by alpha. Its
654 # random, so who cares if it gets transposed.
655 L = matrix(L)
656 game1 = SymmetricLinearGame(L, K, e1, e2)
657 value1 = game1.solution().game_value()
658
659 alpha = uniform(0.1, 10)
660 game2 = SymmetricLinearGame(alpha*L, K, e1, e2)
661 value2 = game2.solution().game_value()
662 self.assert_within_tol(alpha*value1, value2)
663
664
665 def test_scaling_orthant(self):
666 """
667 Test that scaling ``L`` by a nonnegative number scales the value
668 of the game by the same number over the nonnegative orthant.
669 """
670 (L, K, e1, e2) = _random_orthant_params()
671 self.assert_scaling_works(L, K, e1, e2)
672
673
674 def test_scaling_icecream(self):
675 """
676 The same test as :meth:`test_nonnegative_scaling_orthant`,
677 except over the ice cream cone.
678 """
679 (L, K, e1, e2) = _random_icecream_params()
680 self.assert_scaling_works(L, K, e1, e2)
681
682
683 def assert_translation_works(self, L, K, e1, e2):
684 """
685 Check that translating ``L`` by alpha*(e1*e2.trans()) increases
686 the value of the associated game by alpha.
687 """
688 e1 = matrix(e1, (K.dimension(), 1))
689 e2 = matrix(e2, (K.dimension(), 1))
690 game1 = SymmetricLinearGame(L, K, e1, e2)
691 soln1 = game1.solution()
692 value1 = soln1.game_value()
693 x_bar = soln1.player1_optimal()
694 y_bar = soln1.player2_optimal()
695
696 # Make ``L`` a CVXOPT matrix so that we can do math with
697 # it. Note that this gives us the "correct" representation of
698 # ``L`` (in agreement with what G has), but COLUMN indexed.
699 alpha = uniform(-10, 10)
700 L = matrix(L).trans()
701 tensor_prod = e1*e2.trans()
702
703 # Likewise, this is the "correct" representation of ``M``, but
704 # COLUMN indexed...
705 M = L + alpha*tensor_prod
706
707 # so we have to transpose it when we feed it to the constructor.
708 game2 = SymmetricLinearGame(M.trans(), K, e1, e2)
709 value2 = game2.solution().game_value()
710
711 self.assert_within_tol(value1 + alpha, value2)
712
713 # Make sure the same optimal pair works.
714 self.assert_within_tol(value2, inner_product(M*x_bar, y_bar))
715
716
717 def test_translation_orthant(self):
718 """
719 Test that translation works over the nonnegative orthant.
720 """
721 (L, K, e1, e2) = _random_orthant_params()
722 self.assert_translation_works(L, K, e1, e2)
723
724
725 def test_translation_icecream(self):
726 """
727 The same as :meth:`test_translation_orthant`, except over the
728 ice cream cone.
729 """
730 (L, K, e1, e2) = _random_icecream_params()
731 self.assert_translation_works(L, K, e1, e2)
732
733
734 def assert_opposite_game_works(self, L, K, e1, e2):
735 """
736 Check the value of the "opposite" game that gives rise to a
737 value that is the negation of the original game. Comes from
738 some corollary.
739 """
740 e1 = matrix(e1, (K.dimension(), 1))
741 e2 = matrix(e2, (K.dimension(), 1))
742 game1 = SymmetricLinearGame(L, K, e1, e2)
743
744 # Make ``L`` a CVXOPT matrix so that we can do math with
745 # it. Note that this gives us the "correct" representation of
746 # ``L`` (in agreement with what G has), but COLUMN indexed.
747 L = matrix(L).trans()
748
749 # Likewise, this is the "correct" representation of ``M``, but
750 # COLUMN indexed...
751 M = -L.trans()
752
753 # so we have to transpose it when we feed it to the constructor.
754 game2 = SymmetricLinearGame(M.trans(), K, e2, e1)
755
756 soln1 = game1.solution()
757 x_bar = soln1.player1_optimal()
758 y_bar = soln1.player2_optimal()
759 soln2 = game2.solution()
760
761 self.assert_within_tol(-soln1.game_value(), soln2.game_value())
762
763 # Make sure the switched optimal pair works.
764 self.assert_within_tol(soln2.game_value(),
765 inner_product(M*y_bar, x_bar))
766
767
768 def test_opposite_game_orthant(self):
769 """
770 Test the value of the "opposite" game over the nonnegative
771 orthant.
772 """
773 (L, K, e1, e2) = _random_orthant_params()
774 self.assert_opposite_game_works(L, K, e1, e2)
775
776
777 def test_opposite_game_icecream(self):
778 """
779 Like :meth:`test_opposite_game_orthant`, except over the
780 ice-cream cone.
781 """
782 (L, K, e1, e2) = _random_icecream_params()
783 self.assert_opposite_game_works(L, K, e1, e2)
784
785
786 def assert_orthogonality(self, L, K, e1, e2):
787 """
788 Two orthogonality relations hold at an optimal solution, and we
789 check them here.
790 """
791 game = SymmetricLinearGame(L, K, e1, e2)
792 soln = game.solution()
793 x_bar = soln.player1_optimal()
794 y_bar = soln.player2_optimal()
795 value = soln.game_value()
796
797 # Make these matrices so that we can compute with them.
798 L = matrix(L).trans()
799 e1 = matrix(e1, (K.dimension(), 1))
800 e2 = matrix(e2, (K.dimension(), 1))
801
802 ip1 = inner_product(y_bar, L*x_bar - value*e1)
803 self.assert_within_tol(ip1, 0)
804
805 ip2 = inner_product(value*e2 - L.trans()*y_bar, x_bar)
806 self.assert_within_tol(ip2, 0)
807
808
809 def test_orthogonality_orthant(self):
810 """
811 Check the orthgonality relationships that hold for a solution
812 over the nonnegative orthant.
813 """
814 (L, K, e1, e2) = _random_orthant_params()
815 self.assert_orthogonality(L, K, e1, e2)
816
817
818 def test_orthogonality_icecream(self):
819 """
820 Check the orthgonality relationships that hold for a solution
821 over the ice-cream cone.
822 """
823 (L, K, e1, e2) = _random_icecream_params()
824 self.assert_orthogonality(L, K, e1, e2)
825
826
827 def test_positive_operator_value(self):
828 """
829 Test that a positive operator on the nonnegative orthant gives
830 rise to a a game with a nonnegative value.
831
832 This test theoretically applies to the ice-cream cone as well,
833 but we don't know how to make positive operators on that cone.
834 """
835 (_, K, e1, e2) = _random_orthant_params()
836
837 # Ignore that L, we need a nonnegative one.
838 L = _random_nonnegative_matrix(K.dimension())
839
840 game = SymmetricLinearGame(L, K, e1, e2)
841 self.assertTrue(game.solution().game_value() >= -options.ABS_TOL)
842
843 def test_lyapunov_orthant(self):
844 """
845 Test that a Lyapunov game on the nonnegative orthant works.
846 """
847 (_, K, e1, e2) = _random_orthant_params()
848
849 # Ignore that L, we need a diagonal (Lyapunov-like) one.
850 L = _random_diagonal_matrix(K.dimension())
851 game = SymmetricLinearGame(L, K, e1, e2)
852 soln = game.solution()
853
854 # We only check for positive/negative stability if the game
855 # value is not basically zero. If the value is that close to
856 # zero, we just won't check any assertions.
857 L = matrix(L).trans()
858 if soln.game_value() > options.ABS_TOL:
859 # L should be positive stable
860 ps = all([eig > -options.ABS_TOL for eig in eigenvalues_re(L)])
861 self.assertTrue(ps)
862 elif soln.game_value() < -options.ABS_TOL:
863 # L should be negative stable
864 ns = all([eig < options.ABS_TOL for eig in eigenvalues_re(L)])
865 self.assertTrue(ns)
866
867 # The dual game's value should always equal the primal's.
868 dualsoln = game.dual().solution()
869 self.assert_within_tol(dualsoln.game_value(), soln.game_value())