]> gitweb.michael.orlitzky.com - dunshire.git/blob - src/dunshire/games.py
Fix (or cover up) a bunch of pylint warnings.
[dunshire.git] / src / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7
8 # These few are used only for tests.
9 from math import sqrt
10 from random import randint, uniform
11 from unittest import TestCase
12
13 # These are mostly actually needed.
14 from cvxopt import matrix, printing, solvers
15 from cones import CartesianProduct, IceCream, NonnegativeOrthant
16 from errors import GameUnsolvableException
17 from matrices import append_col, append_row, identity, inner_product, norm
18 import options
19
20 printing.options['dformat'] = options.FLOAT_FORMAT
21 solvers.options['show_progress'] = options.VERBOSE
22
23
24 class Solution:
25 """
26 A representation of the solution of a linear game. It should contain
27 the value of the game, and both players' strategies.
28
29 Examples
30 --------
31
32 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
33 Game value: 10.0000000
34 Player 1 optimal:
35 [ 1]
36 [ 2]
37 Player 2 optimal:
38 [ 3]
39 [ 4]
40
41 """
42 def __init__(self, game_value, p1_optimal, p2_optimal):
43 """
44 Create a new Solution object from a game value and two optimal
45 strategies for the players.
46 """
47 self._game_value = game_value
48 self._player1_optimal = p1_optimal
49 self._player2_optimal = p2_optimal
50
51 def __str__(self):
52 """
53 Return a string describing the solution of a linear game.
54
55 The three data that are described are,
56
57 * The value of the game.
58 * The optimal strategy of player one.
59 * The optimal strategy of player two.
60
61 The two optimal strategy vectors are indented by two spaces.
62 """
63 tpl = 'Game value: {:.7f}\n' \
64 'Player 1 optimal:{:s}\n' \
65 'Player 2 optimal:{:s}'
66
67 p1_str = '\n{!s}'.format(self.player1_optimal())
68 p1_str = '\n '.join(p1_str.splitlines())
69 p2_str = '\n{!s}'.format(self.player2_optimal())
70 p2_str = '\n '.join(p2_str.splitlines())
71
72 return tpl.format(self.game_value(), p1_str, p2_str)
73
74
75 def game_value(self):
76 """
77 Return the game value for this solution.
78
79 Examples
80 --------
81
82 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
83 >>> s.game_value()
84 10
85
86 """
87 return self._game_value
88
89
90 def player1_optimal(self):
91 """
92 Return player one's optimal strategy in this solution.
93
94 Examples
95 --------
96
97 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
98 >>> print(s.player1_optimal())
99 [ 1]
100 [ 2]
101 <BLANKLINE>
102
103 """
104 return self._player1_optimal
105
106
107 def player2_optimal(self):
108 """
109 Return player two's optimal strategy in this solution.
110
111 Examples
112 --------
113
114 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
115 >>> print(s.player2_optimal())
116 [ 3]
117 [ 4]
118 <BLANKLINE>
119
120 """
121 return self._player2_optimal
122
123
124 class SymmetricLinearGame:
125 r"""
126 A representation of a symmetric linear game.
127
128 The data for a symmetric linear game are,
129
130 * A "payoff" operator ``L``.
131 * A symmetric cone ``K``.
132 * Two points ``e1`` and ``e2`` in the interior of ``K``.
133
134 The ambient space is assumed to be the span of ``K``.
135
136 With those data understood, the game is played as follows. Players
137 one and two choose points :math:`x` and :math:`y` respectively, from
138 their respective strategy sets,
139
140 .. math::
141 \begin{aligned}
142 \Delta_{1}
143 &=
144 \left\{
145 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
146 \right\}\\
147 \Delta_{2}
148 &=
149 \left\{
150 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
151 \right\}.
152 \end{aligned}
153
154 Afterwards, a "payout" is computed as :math:`\left\langle
155 L\left(x\right), y \right\rangle` and is paid to player one out of
156 player two's pocket. The game is therefore zero sum, and we suppose
157 that player one would like to guarantee himself the largest minimum
158 payout possible. That is, player one wishes to,
159
160 .. math::
161 \begin{aligned}
162 \text{maximize }
163 &\underset{y \in \Delta_{2}}{\min}\left(
164 \left\langle L\left(x\right), y \right\rangle
165 \right)\\
166 \text{subject to } & x \in \Delta_{1}.
167 \end{aligned}
168
169 Player two has the simultaneous goal to,
170
171 .. math::
172 \begin{aligned}
173 \text{minimize }
174 &\underset{x \in \Delta_{1}}{\max}\left(
175 \left\langle L\left(x\right), y \right\rangle
176 \right)\\
177 \text{subject to } & y \in \Delta_{2}.
178 \end{aligned}
179
180 These goals obviously conflict (the game is zero sum), but an
181 existence theorem guarantees at least one optimal min-max solution
182 from which neither player would like to deviate. This class is
183 able to find such a solution.
184
185 Parameters
186 ----------
187
188 L : list of list of float
189 A matrix represented as a list of ROWS. This representation
190 agrees with (for example) SageMath and NumPy, but not with CVXOPT
191 (whose matrix constructor accepts a list of columns).
192
193 K : :class:`SymmetricCone`
194 The symmetric cone instance over which the game is played.
195
196 e1 : iterable float
197 The interior point of ``K`` belonging to player one; it
198 can be of any iterable type having the correct length.
199
200 e2 : iterable float
201 The interior point of ``K`` belonging to player two; it
202 can be of any enumerable type having the correct length.
203
204 Raises
205 ------
206
207 ValueError
208 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
209
210 Examples
211 --------
212
213 >>> from cones import NonnegativeOrthant
214 >>> K = NonnegativeOrthant(3)
215 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
216 >>> e1 = [1,1,1]
217 >>> e2 = [1,2,3]
218 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
219 >>> print(SLG)
220 The linear game (L, K, e1, e2) where
221 L = [ 1 -5 -15]
222 [ -1 2 -3]
223 [-12 -15 1],
224 K = Nonnegative orthant in the real 3-space,
225 e1 = [ 1]
226 [ 1]
227 [ 1],
228 e2 = [ 1]
229 [ 2]
230 [ 3].
231
232 Lists can (and probably should) be used for every argument::
233
234 >>> from cones import NonnegativeOrthant
235 >>> K = NonnegativeOrthant(2)
236 >>> L = [[1,0],[0,1]]
237 >>> e1 = [1,1]
238 >>> e2 = [1,1]
239 >>> G = SymmetricLinearGame(L, K, e1, e2)
240 >>> print(G)
241 The linear game (L, K, e1, e2) where
242 L = [ 1 0]
243 [ 0 1],
244 K = Nonnegative orthant in the real 2-space,
245 e1 = [ 1]
246 [ 1],
247 e2 = [ 1]
248 [ 1].
249
250 The points ``e1`` and ``e2`` can also be passed as some other
251 enumerable type (of the correct length) without much harm, since
252 there is no row/column ambiguity::
253
254 >>> import cvxopt
255 >>> import numpy
256 >>> from cones import NonnegativeOrthant
257 >>> K = NonnegativeOrthant(2)
258 >>> L = [[1,0],[0,1]]
259 >>> e1 = cvxopt.matrix([1,1])
260 >>> e2 = numpy.matrix([1,1])
261 >>> G = SymmetricLinearGame(L, K, e1, e2)
262 >>> print(G)
263 The linear game (L, K, e1, e2) where
264 L = [ 1 0]
265 [ 0 1],
266 K = Nonnegative orthant in the real 2-space,
267 e1 = [ 1]
268 [ 1],
269 e2 = [ 1]
270 [ 1].
271
272 However, ``L`` will always be intepreted as a list of rows, even
273 if it is passed as a :class:`cvxopt.base.matrix` which is
274 otherwise indexed by columns::
275
276 >>> import cvxopt
277 >>> from cones import NonnegativeOrthant
278 >>> K = NonnegativeOrthant(2)
279 >>> L = [[1,2],[3,4]]
280 >>> e1 = [1,1]
281 >>> e2 = e1
282 >>> G = SymmetricLinearGame(L, K, e1, e2)
283 >>> print(G)
284 The linear game (L, K, e1, e2) where
285 L = [ 1 2]
286 [ 3 4],
287 K = Nonnegative orthant in the real 2-space,
288 e1 = [ 1]
289 [ 1],
290 e2 = [ 1]
291 [ 1].
292 >>> L = cvxopt.matrix(L)
293 >>> print(L)
294 [ 1 3]
295 [ 2 4]
296 <BLANKLINE>
297 >>> G = SymmetricLinearGame(L, K, e1, e2)
298 >>> print(G)
299 The linear game (L, K, e1, e2) where
300 L = [ 1 2]
301 [ 3 4],
302 K = Nonnegative orthant in the real 2-space,
303 e1 = [ 1]
304 [ 1],
305 e2 = [ 1]
306 [ 1].
307
308 """
309 def __init__(self, L, K, e1, e2):
310 """
311 Create a new SymmetricLinearGame object.
312 """
313 self._K = K
314 self._e1 = matrix(e1, (K.dimension(), 1))
315 self._e2 = matrix(e2, (K.dimension(), 1))
316
317 # Our input ``L`` is indexed by rows but CVXOPT matrices are
318 # indexed by columns, so we need to transpose the input before
319 # feeding it to CVXOPT.
320 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
321
322 if not self._e1 in K:
323 raise ValueError('the point e1 must lie in the interior of K')
324
325 if not self._e2 in K:
326 raise ValueError('the point e2 must lie in the interior of K')
327
328 def __str__(self):
329 """
330 Return a string representation of this game.
331 """
332 tpl = 'The linear game (L, K, e1, e2) where\n' \
333 ' L = {:s},\n' \
334 ' K = {!s},\n' \
335 ' e1 = {:s},\n' \
336 ' e2 = {:s}.'
337 indented_L = '\n '.join(str(self._L).splitlines())
338 indented_e1 = '\n '.join(str(self._e1).splitlines())
339 indented_e2 = '\n '.join(str(self._e2).splitlines())
340 return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
341
342
343 def solution(self):
344 """
345 Solve this linear game and return a :class:`Solution`.
346
347 Returns
348 -------
349
350 :class:`Solution`
351 A :class:`Solution` object describing the game's value and
352 the optimal strategies of both players.
353
354 Raises
355 ------
356 GameUnsolvableException
357 If the game could not be solved (if an optimal solution to its
358 associated cone program was not found).
359
360 Examples
361 --------
362
363 This example is computed in Gowda and Ravindran in the section
364 "The value of a Z-transformation"::
365
366 >>> from cones import NonnegativeOrthant
367 >>> K = NonnegativeOrthant(3)
368 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
369 >>> e1 = [1,1,1]
370 >>> e2 = [1,1,1]
371 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
372 >>> print(SLG.solution())
373 Game value: -6.1724138
374 Player 1 optimal:
375 [ 0.5517241]
376 [-0.0000000]
377 [ 0.4482759]
378 Player 2 optimal:
379 [0.4482759]
380 [0.0000000]
381 [0.5517241]
382
383 The value of the following game can be computed using the fact
384 that the identity is invertible::
385
386 >>> from cones import NonnegativeOrthant
387 >>> K = NonnegativeOrthant(3)
388 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
389 >>> e1 = [1,2,3]
390 >>> e2 = [4,5,6]
391 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
392 >>> print(SLG.solution())
393 Game value: 0.0312500
394 Player 1 optimal:
395 [0.0312500]
396 [0.0625000]
397 [0.0937500]
398 Player 2 optimal:
399 [0.1250000]
400 [0.1562500]
401 [0.1875000]
402
403 """
404 # The cone "C" that appears in the statement of the CVXOPT
405 # conelp program.
406 C = CartesianProduct(self._K, self._K)
407
408 # The column vector "b" that appears on the right-hand side of
409 # Ax = b in the statement of the CVXOPT conelp program.
410 b = matrix([1], tc='d')
411
412 # A column of zeros that fits K.
413 zero = matrix(0, (self._K.dimension(), 1), tc='d')
414
415 # The column vector "h" that appears on the right-hand side of
416 # Gx + s = h in the statement of the CVXOPT conelp program.
417 h = matrix([zero, zero])
418
419 # The column vector "c" that appears in the objective function
420 # value <c,x> in the statement of the CVXOPT conelp program.
421 c = matrix([-1, zero])
422
423 # The matrix "G" that appears on the left-hand side of Gx + s = h
424 # in the statement of the CVXOPT conelp program.
425 G = append_row(append_col(zero, -identity(self._K.dimension())),
426 append_col(self._e1, -self._L))
427
428 # The matrix "A" that appears on the right-hand side of Ax = b
429 # in the statement of the CVXOPT conelp program.
430 A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
431
432 # Actually solve the thing and obtain a dictionary describing
433 # what happened.
434 soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
435
436 p1_value = -soln_dict['primal objective']
437 p2_value = -soln_dict['dual objective']
438 p1_optimal = soln_dict['x'][1:]
439 p2_optimal = soln_dict['z'][self._K.dimension():]
440
441 # The "status" field contains "optimal" if everything went
442 # according to plan. Other possible values are "primal
443 # infeasible", "dual infeasible", "unknown", all of which mean
444 # we didn't get a solution. The "infeasible" ones are the
445 # worst, since they indicate that CVXOPT is convinced the
446 # problem is infeasible (and that cannot happen).
447 if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
448 raise GameUnsolvableException(soln_dict)
449 elif soln_dict['status'] == 'unknown':
450 # When we get a status of "unknown", we may still be able
451 # to salvage a solution out of the returned
452 # dictionary. Often this is the result of numerical
453 # difficulty and we can simply check that the primal/dual
454 # objectives match (within a tolerance) and that the
455 # primal/dual optimal solutions are within the cone (to a
456 # tolerance as well).
457 if abs(p1_value - p2_value) > options.ABS_TOL:
458 raise GameUnsolvableException(soln_dict)
459 if (p1_optimal not in self._K) or (p2_optimal not in self._K):
460 raise GameUnsolvableException(soln_dict)
461
462 return Solution(p1_value, p1_optimal, p2_optimal)
463
464
465 def dual(self):
466 r"""
467 Return the dual game to this game.
468
469 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
470 then its dual is :math:`G^{*} =
471 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
472 is symmetric, :math:`K^{*} = K`.
473
474 Examples
475 --------
476
477 >>> from cones import NonnegativeOrthant
478 >>> K = NonnegativeOrthant(3)
479 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
480 >>> e1 = [1,1,1]
481 >>> e2 = [1,2,3]
482 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
483 >>> print(SLG.dual())
484 The linear game (L, K, e1, e2) where
485 L = [ 1 -1 -12]
486 [ -5 2 -15]
487 [-15 -3 1],
488 K = Nonnegative orthant in the real 3-space,
489 e1 = [ 1]
490 [ 2]
491 [ 3],
492 e2 = [ 1]
493 [ 1]
494 [ 1].
495
496 """
497 # We pass ``self._L`` right back into the constructor, because
498 # it will be transposed there. And keep in mind that ``self._K``
499 # is its own dual.
500 return SymmetricLinearGame(self._L,
501 self._K,
502 self._e2,
503 self._e1)
504
505
506
507 def _random_square_matrix(dims):
508 """
509 Generate a random square (``dims``-by-``dims``) matrix,
510 represented as a list of rows. This is used only by the
511 :class:`SymmetricLinearGameTest` class.
512 """
513 return [[uniform(-10, 10) for i in range(dims)] for j in range(dims)]
514
515
516 def _random_orthant_params():
517 """
518 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
519 random game over the nonnegative orthant. This is only used by
520 the :class:`SymmetricLinearGameTest` class.
521 """
522 ambient_dim = randint(1, 10)
523 K = NonnegativeOrthant(ambient_dim)
524 e1 = [uniform(0.5, 10) for idx in range(K.dimension())]
525 e2 = [uniform(0.5, 10) for idx in range(K.dimension())]
526 L = _random_square_matrix(K.dimension())
527 return (L, K, e1, e2)
528
529
530 def _random_icecream_params():
531 """
532 Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
533 random game over the ice cream cone. This is only used by
534 the :class:`SymmetricLinearGameTest` class.
535 """
536 # Use a minimum dimension of two to avoid divide-by-zero in
537 # the fudge factor we make up later.
538 ambient_dim = randint(2, 10)
539 K = IceCream(ambient_dim)
540 e1 = [1] # Set the "height" of e1 to one
541 e2 = [1] # And the same for e2
542
543 # If we choose the rest of the components of e1,e2 randomly
544 # between 0 and 1, then the largest the squared norm of the
545 # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
546 # need to make it less than one (the height of the cone) so
547 # that the whole thing is in the cone. The norm of the
548 # non-height part is sqrt(dim(K) - 1), and we can divide by
549 # twice that.
550 fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
551 e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
552 e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
553 L = _random_square_matrix(K.dimension())
554
555 return (L, K, e1, e2)
556
557
558 class SymmetricLinearGameTest(TestCase):
559 """
560 Tests for the SymmetricLinearGame and Solution classes.
561 """
562 def assert_within_tol(self, first, second):
563 """
564 Test that ``first`` and ``second`` are equal within our default
565 tolerance.
566 """
567 self.assertTrue(abs(first - second) < options.ABS_TOL)
568
569
570 def assert_norm_within_tol(self, first, second):
571 """
572 Test that ``first`` and ``second`` vectors are equal in the
573 sense that the norm of their difference is within our default
574 tolerance.
575 """
576 self.assert_within_tol(norm(first - second), 0)
577
578
579 def assert_solution_exists(self, L, K, e1, e2):
580 """
581 Given the parameters needed to construct a SymmetricLinearGame,
582 ensure that that game has a solution.
583 """
584 G = SymmetricLinearGame(L, K, e1, e2)
585 soln = G.solution()
586
587 # The matrix() constructor assumes that ``L`` is a list of
588 # columns, so we transpose it to agree with what
589 # SymmetricLinearGame() thinks.
590 L_matrix = matrix(L).trans()
591 expected = inner_product(L_matrix*soln.player1_optimal(),
592 soln.player2_optimal())
593 self.assert_within_tol(soln.game_value(), expected)
594
595
596 def test_solution_exists_orthant(self):
597 """
598 Every linear game has a solution, so we should be able to solve
599 every symmetric linear game over the NonnegativeOrthant. Pick
600 some parameters randomly and give it a shot. The resulting
601 optimal solutions should give us the optimal game value when we
602 apply the payoff operator to them.
603 """
604 (L, K, e1, e2) = _random_orthant_params()
605 self.assert_solution_exists(L, K, e1, e2)
606
607
608 def test_solution_exists_icecream(self):
609 """
610 Like :meth:`test_solution_exists_nonnegative_orthant`, except
611 over the ice cream cone.
612 """
613 (L, K, e1, e2) = _random_icecream_params()
614 self.assert_solution_exists(L, K, e1, e2)
615
616
617 def test_negative_value_z_operator(self):
618 """
619 Test the example given in Gowda/Ravindran of a Z-matrix with
620 negative game value on the nonnegative orthant.
621 """
622 K = NonnegativeOrthant(2)
623 e1 = [1, 1]
624 e2 = e1
625 L = [[1, -2], [-2, 1]]
626 G = SymmetricLinearGame(L, K, e1, e2)
627 self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
628
629
630 def assert_scaling_works(self, L, K, e1, e2):
631 """
632 Test that scaling ``L`` by a nonnegative number scales the value
633 of the game by the same number.
634 """
635 # Make ``L`` a matrix so that we can scale it by alpha. Its
636 # random, so who cares if it gets transposed.
637 L = matrix(L)
638 game1 = SymmetricLinearGame(L, K, e1, e2)
639 value1 = game1.solution().game_value()
640
641 alpha = uniform(0.1, 10)
642 game2 = SymmetricLinearGame(alpha*L, K, e1, e2)
643 value2 = game2.solution().game_value()
644 self.assert_within_tol(alpha*value1, value2)
645
646
647 def test_scaling_orthant(self):
648 """
649 Test that scaling ``L`` by a nonnegative number scales the value
650 of the game by the same number over the nonnegative orthant.
651 """
652 (L, K, e1, e2) = _random_orthant_params()
653 self.assert_scaling_works(L, K, e1, e2)
654
655
656 def test_scaling_icecream(self):
657 """
658 The same test as :meth:`test_nonnegative_scaling_orthant`,
659 except over the ice cream cone.
660 """
661 (L, K, e1, e2) = _random_icecream_params()
662 self.assert_scaling_works(L, K, e1, e2)
663
664
665 def assert_translation_works(self, L, K, e1, e2):
666 """
667 Check that translating ``L`` by alpha*(e1*e2.trans()) increases
668 the value of the associated game by alpha.
669 """
670 e1 = matrix(e1, (K.dimension(), 1))
671 e2 = matrix(e2, (K.dimension(), 1))
672 game1 = SymmetricLinearGame(L, K, e1, e2)
673 soln1 = game1.solution()
674 value1 = soln1.game_value()
675 x_bar = soln1.player1_optimal()
676 y_bar = soln1.player2_optimal()
677
678 # Make ``L`` a CVXOPT matrix so that we can do math with
679 # it. Note that this gives us the "correct" representation of
680 # ``L`` (in agreement with what G has), but COLUMN indexed.
681 alpha = uniform(-10, 10)
682 L = matrix(L).trans()
683 tensor_prod = e1*e2.trans()
684
685 # Likewise, this is the "correct" representation of ``M``, but
686 # COLUMN indexed...
687 M = L + alpha*tensor_prod
688
689 # so we have to transpose it when we feed it to the constructor.
690 game2 = SymmetricLinearGame(M.trans(), K, e1, e2)
691 value2 = game2.solution().game_value()
692
693 self.assert_within_tol(value1 + alpha, value2)
694
695 # Make sure the same optimal pair works.
696 self.assert_within_tol(value2, inner_product(M*x_bar, y_bar))
697
698
699 def test_translation_orthant(self):
700 """
701 Test that translation works over the nonnegative orthant.
702 """
703 (L, K, e1, e2) = _random_orthant_params()
704 self.assert_translation_works(L, K, e1, e2)
705
706
707 def test_translation_icecream(self):
708 """
709 The same as :meth:`test_translation_orthant`, except over the
710 ice cream cone.
711 """
712 (L, K, e1, e2) = _random_icecream_params()
713 self.assert_translation_works(L, K, e1, e2)
714
715
716 def assert_opposite_game_works(self, L, K, e1, e2):
717 """
718 Check the value of the "opposite" game that gives rise to a
719 value that is the negation of the original game. Comes from
720 some corollary.
721 """
722 e1 = matrix(e1, (K.dimension(), 1))
723 e2 = matrix(e2, (K.dimension(), 1))
724 game1 = SymmetricLinearGame(L, K, e1, e2)
725
726 # Make ``L`` a CVXOPT matrix so that we can do math with
727 # it. Note that this gives us the "correct" representation of
728 # ``L`` (in agreement with what G has), but COLUMN indexed.
729 L = matrix(L).trans()
730
731 # Likewise, this is the "correct" representation of ``M``, but
732 # COLUMN indexed...
733 M = -L.trans()
734
735 # so we have to transpose it when we feed it to the constructor.
736 game2 = SymmetricLinearGame(M.trans(), K, e2, e1)
737
738 soln1 = game1.solution()
739 x_bar = soln1.player1_optimal()
740 y_bar = soln1.player2_optimal()
741 soln2 = game2.solution()
742
743 self.assert_within_tol(-soln1.game_value(), soln2.game_value())
744
745 # Make sure the switched optimal pair works.
746 self.assert_within_tol(soln2.game_value(),
747 inner_product(M*y_bar, x_bar))
748
749
750 def test_opposite_game_orthant(self):
751 """
752 Test the value of the "opposite" game over the nonnegative
753 orthant.
754 """
755 (L, K, e1, e2) = _random_orthant_params()
756 self.assert_opposite_game_works(L, K, e1, e2)
757
758
759 def test_opposite_game_icecream(self):
760 """
761 Like :meth:`test_opposite_game_orthant`, except over the
762 ice-cream cone.
763 """
764 (L, K, e1, e2) = _random_icecream_params()
765 self.assert_opposite_game_works(L, K, e1, e2)