]> gitweb.michael.orlitzky.com - dunshire.git/blob - dunshire/games.py
Add a ball_radius() method for cones and use it to compute starting points.
[dunshire.git] / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7 from cvxopt import matrix, printing, solvers
8 from .cones import CartesianProduct
9 from .errors import GameUnsolvableException, PoorScalingException
10 from .matrices import (append_col, append_row, condition_number, identity,
11 inner_product, norm, specnorm)
12 from . import options
13
14 printing.options['dformat'] = options.FLOAT_FORMAT
15
16 class Solution:
17 """
18 A representation of the solution of a linear game. It should contain
19 the value of the game, and both players' strategies.
20
21 Examples
22 --------
23
24 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
25 Game value: 10.000...
26 Player 1 optimal:
27 [ 1]
28 [ 2]
29 Player 2 optimal:
30 [ 3]
31 [ 4]
32
33 """
34 def __init__(self, game_value, p1_optimal, p2_optimal):
35 """
36 Create a new Solution object from a game value and two optimal
37 strategies for the players.
38 """
39 self._game_value = game_value
40 self._player1_optimal = p1_optimal
41 self._player2_optimal = p2_optimal
42
43 def __str__(self):
44 """
45 Return a string describing the solution of a linear game.
46
47 The three data that are described are,
48
49 * The value of the game.
50 * The optimal strategy of player one.
51 * The optimal strategy of player two.
52
53 The two optimal strategy vectors are indented by two spaces.
54 """
55 tpl = 'Game value: {:.7f}\n' \
56 'Player 1 optimal:{:s}\n' \
57 'Player 2 optimal:{:s}'
58
59 p1_str = '\n{!s}'.format(self.player1_optimal())
60 p1_str = '\n '.join(p1_str.splitlines())
61 p2_str = '\n{!s}'.format(self.player2_optimal())
62 p2_str = '\n '.join(p2_str.splitlines())
63
64 return tpl.format(self.game_value(), p1_str, p2_str)
65
66
67 def game_value(self):
68 """
69 Return the game value for this solution.
70
71 Examples
72 --------
73
74 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
75 >>> s.game_value()
76 10
77
78 """
79 return self._game_value
80
81
82 def player1_optimal(self):
83 """
84 Return player one's optimal strategy in this solution.
85
86 Examples
87 --------
88
89 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
90 >>> print(s.player1_optimal())
91 [ 1]
92 [ 2]
93 <BLANKLINE>
94
95 """
96 return self._player1_optimal
97
98
99 def player2_optimal(self):
100 """
101 Return player two's optimal strategy in this solution.
102
103 Examples
104 --------
105
106 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
107 >>> print(s.player2_optimal())
108 [ 3]
109 [ 4]
110 <BLANKLINE>
111
112 """
113 return self._player2_optimal
114
115
116 class SymmetricLinearGame:
117 r"""
118 A representation of a symmetric linear game.
119
120 The data for a symmetric linear game are,
121
122 * A "payoff" operator ``L``.
123 * A symmetric cone ``K``.
124 * Two points ``e1`` and ``e2`` in the interior of ``K``.
125
126 The ambient space is assumed to be the span of ``K``.
127
128 With those data understood, the game is played as follows. Players
129 one and two choose points :math:`x` and :math:`y` respectively, from
130 their respective strategy sets,
131
132 .. math::
133 \begin{aligned}
134 \Delta_{1}
135 &=
136 \left\{
137 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
138 \right\}\\
139 \Delta_{2}
140 &=
141 \left\{
142 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
143 \right\}.
144 \end{aligned}
145
146 Afterwards, a "payout" is computed as :math:`\left\langle
147 L\left(x\right), y \right\rangle` and is paid to player one out of
148 player two's pocket. The game is therefore zero sum, and we suppose
149 that player one would like to guarantee himself the largest minimum
150 payout possible. That is, player one wishes to,
151
152 .. math::
153 \begin{aligned}
154 \text{maximize }
155 &\underset{y \in \Delta_{2}}{\min}\left(
156 \left\langle L\left(x\right), y \right\rangle
157 \right)\\
158 \text{subject to } & x \in \Delta_{1}.
159 \end{aligned}
160
161 Player two has the simultaneous goal to,
162
163 .. math::
164 \begin{aligned}
165 \text{minimize }
166 &\underset{x \in \Delta_{1}}{\max}\left(
167 \left\langle L\left(x\right), y \right\rangle
168 \right)\\
169 \text{subject to } & y \in \Delta_{2}.
170 \end{aligned}
171
172 These goals obviously conflict (the game is zero sum), but an
173 existence theorem guarantees at least one optimal min-max solution
174 from which neither player would like to deviate. This class is
175 able to find such a solution.
176
177 Parameters
178 ----------
179
180 L : list of list of float
181 A matrix represented as a list of ROWS. This representation
182 agrees with (for example) SageMath and NumPy, but not with CVXOPT
183 (whose matrix constructor accepts a list of columns).
184
185 K : :class:`SymmetricCone`
186 The symmetric cone instance over which the game is played.
187
188 e1 : iterable float
189 The interior point of ``K`` belonging to player one; it
190 can be of any iterable type having the correct length.
191
192 e2 : iterable float
193 The interior point of ``K`` belonging to player two; it
194 can be of any enumerable type having the correct length.
195
196 Raises
197 ------
198
199 ValueError
200 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
201
202 Examples
203 --------
204
205 >>> from dunshire import *
206 >>> K = NonnegativeOrthant(3)
207 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
208 >>> e1 = [1,1,1]
209 >>> e2 = [1,2,3]
210 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
211 >>> print(SLG)
212 The linear game (L, K, e1, e2) where
213 L = [ 1 -5 -15]
214 [ -1 2 -3]
215 [-12 -15 1],
216 K = Nonnegative orthant in the real 3-space,
217 e1 = [ 1]
218 [ 1]
219 [ 1],
220 e2 = [ 1]
221 [ 2]
222 [ 3],
223 Condition((L, K, e1, e2)) = 31.834...
224
225 Lists can (and probably should) be used for every argument::
226
227 >>> from dunshire import *
228 >>> K = NonnegativeOrthant(2)
229 >>> L = [[1,0],[0,1]]
230 >>> e1 = [1,1]
231 >>> e2 = [1,1]
232 >>> G = SymmetricLinearGame(L, K, e1, e2)
233 >>> print(G)
234 The linear game (L, K, e1, e2) where
235 L = [ 1 0]
236 [ 0 1],
237 K = Nonnegative orthant in the real 2-space,
238 e1 = [ 1]
239 [ 1],
240 e2 = [ 1]
241 [ 1],
242 Condition((L, K, e1, e2)) = 1.707...
243
244 The points ``e1`` and ``e2`` can also be passed as some other
245 enumerable type (of the correct length) without much harm, since
246 there is no row/column ambiguity::
247
248 >>> import cvxopt
249 >>> import numpy
250 >>> from dunshire import *
251 >>> K = NonnegativeOrthant(2)
252 >>> L = [[1,0],[0,1]]
253 >>> e1 = cvxopt.matrix([1,1])
254 >>> e2 = numpy.matrix([1,1])
255 >>> G = SymmetricLinearGame(L, K, e1, e2)
256 >>> print(G)
257 The linear game (L, K, e1, e2) where
258 L = [ 1 0]
259 [ 0 1],
260 K = Nonnegative orthant in the real 2-space,
261 e1 = [ 1]
262 [ 1],
263 e2 = [ 1]
264 [ 1],
265 Condition((L, K, e1, e2)) = 1.707...
266
267 However, ``L`` will always be intepreted as a list of rows, even
268 if it is passed as a :class:`cvxopt.base.matrix` which is
269 otherwise indexed by columns::
270
271 >>> import cvxopt
272 >>> from dunshire import *
273 >>> K = NonnegativeOrthant(2)
274 >>> L = [[1,2],[3,4]]
275 >>> e1 = [1,1]
276 >>> e2 = e1
277 >>> G = SymmetricLinearGame(L, K, e1, e2)
278 >>> print(G)
279 The linear game (L, K, e1, e2) where
280 L = [ 1 2]
281 [ 3 4],
282 K = Nonnegative orthant in the real 2-space,
283 e1 = [ 1]
284 [ 1],
285 e2 = [ 1]
286 [ 1],
287 Condition((L, K, e1, e2)) = 6.073...
288 >>> L = cvxopt.matrix(L)
289 >>> print(L)
290 [ 1 3]
291 [ 2 4]
292 <BLANKLINE>
293 >>> G = SymmetricLinearGame(L, K, e1, e2)
294 >>> print(G)
295 The linear game (L, K, e1, e2) where
296 L = [ 1 2]
297 [ 3 4],
298 K = Nonnegative orthant in the real 2-space,
299 e1 = [ 1]
300 [ 1],
301 e2 = [ 1]
302 [ 1],
303 Condition((L, K, e1, e2)) = 6.073...
304
305 """
306 def __init__(self, L, K, e1, e2):
307 """
308 Create a new SymmetricLinearGame object.
309 """
310 self._K = K
311 self._e1 = matrix(e1, (K.dimension(), 1))
312 self._e2 = matrix(e2, (K.dimension(), 1))
313
314 # Our input ``L`` is indexed by rows but CVXOPT matrices are
315 # indexed by columns, so we need to transpose the input before
316 # feeding it to CVXOPT.
317 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
318
319 if not self._e1 in K:
320 raise ValueError('the point e1 must lie in the interior of K')
321
322 if not self._e2 in K:
323 raise ValueError('the point e2 must lie in the interior of K')
324
325
326
327 def __str__(self):
328 """
329 Return a string representation of this game.
330 """
331 tpl = 'The linear game (L, K, e1, e2) where\n' \
332 ' L = {:s},\n' \
333 ' K = {!s},\n' \
334 ' e1 = {:s},\n' \
335 ' e2 = {:s},\n' \
336 ' Condition((L, K, e1, e2)) = {:f}.'
337 indented_L = '\n '.join(str(self.L()).splitlines())
338 indented_e1 = '\n '.join(str(self.e1()).splitlines())
339 indented_e2 = '\n '.join(str(self.e2()).splitlines())
340
341 return tpl.format(indented_L,
342 str(self.K()),
343 indented_e1,
344 indented_e2,
345 self.condition())
346
347
348 def L(self):
349 """
350 Return the matrix ``L`` passed to the constructor.
351
352 Returns
353 -------
354
355 matrix
356 The matrix that defines this game's :meth:`payoff` operator.
357
358 Examples
359 --------
360
361 >>> from dunshire import *
362 >>> K = NonnegativeOrthant(3)
363 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
364 >>> e1 = [1,1,1]
365 >>> e2 = [1,2,3]
366 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
367 >>> print(SLG.L())
368 [ 1 -5 -15]
369 [ -1 2 -3]
370 [-12 -15 1]
371 <BLANKLINE>
372
373 """
374 return self._L
375
376
377 def K(self):
378 """
379 Return the cone over which this game is played.
380
381 Returns
382 -------
383
384 SymmetricCone
385 The :class:`SymmetricCone` over which this game is played.
386
387 Examples
388 --------
389
390 >>> from dunshire import *
391 >>> K = NonnegativeOrthant(3)
392 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
393 >>> e1 = [1,1,1]
394 >>> e2 = [1,2,3]
395 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
396 >>> print(SLG.K())
397 Nonnegative orthant in the real 3-space
398
399 """
400 return self._K
401
402
403 def e1(self):
404 """
405 Return player one's interior point.
406
407 Returns
408 -------
409
410 matrix
411 The point interior to :meth:`K` affiliated with player one.
412
413 Examples
414 --------
415
416 >>> from dunshire import *
417 >>> K = NonnegativeOrthant(3)
418 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
419 >>> e1 = [1,1,1]
420 >>> e2 = [1,2,3]
421 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
422 >>> print(SLG.e1())
423 [ 1]
424 [ 1]
425 [ 1]
426 <BLANKLINE>
427
428 """
429 return self._e1
430
431
432 def e2(self):
433 """
434 Return player two's interior point.
435
436 Returns
437 -------
438
439 matrix
440 The point interior to :meth:`K` affiliated with player one.
441
442 Examples
443 --------
444
445 >>> from dunshire import *
446 >>> K = NonnegativeOrthant(3)
447 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
448 >>> e1 = [1,1,1]
449 >>> e2 = [1,2,3]
450 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
451 >>> print(SLG.e2())
452 [ 1]
453 [ 2]
454 [ 3]
455 <BLANKLINE>
456
457 """
458 return self._e2
459
460
461 def payoff(self, strategy1, strategy2):
462 r"""
463 Return the payoff associated with ``strategy1`` and ``strategy2``.
464
465 The payoff operator takes pairs of strategies to a real
466 number. For example, if player one's strategy is :math:`x` and
467 player two's strategy is :math:`y`, then the associated payoff
468 is :math:`\left\langle L\left(x\right),y \right\rangle` \in
469 \mathbb{R}. Here, :math:`L` denotes the same linear operator as
470 :meth:`L`. This method computes the payoff given the two
471 players' strategies.
472
473 Parameters
474 ----------
475
476 strategy1 : matrix
477 Player one's strategy.
478
479 strategy2 : matrix
480 Player two's strategy.
481
482 Returns
483 -------
484
485 float
486 The payoff for the game when player one plays ``strategy1``
487 and player two plays ``strategy2``.
488
489 Examples
490 --------
491
492 The value of the game should be the payoff at the optimal
493 strategies::
494
495 >>> from dunshire import *
496 >>> from dunshire.options import ABS_TOL
497 >>> K = NonnegativeOrthant(3)
498 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
499 >>> e1 = [1,1,1]
500 >>> e2 = [1,1,1]
501 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
502 >>> soln = SLG.solution()
503 >>> x_bar = soln.player1_optimal()
504 >>> y_bar = soln.player2_optimal()
505 >>> abs(SLG.payoff(x_bar, y_bar) - soln.game_value()) < ABS_TOL
506 True
507
508 """
509 return inner_product(self.L()*strategy1, strategy2)
510
511
512 def dimension(self):
513 """
514 Return the dimension of this game.
515
516 The dimension of a game is not needed for the theory, but it is
517 useful for the implementation. We define the dimension of a game
518 to be the dimension of its underlying cone. Or what is the same,
519 the dimension of the space from which the strategies are chosen.
520
521 Returns
522 -------
523
524 int
525 The dimension of the cone :meth:`K`, or of the space where
526 this game is played.
527
528 Examples
529 --------
530
531 The dimension of a game over the nonnegative quadrant in the
532 plane should be two (the dimension of the plane)::
533
534 >>> from dunshire import *
535 >>> K = NonnegativeOrthant(2)
536 >>> L = [[1,-5],[-1,2]]
537 >>> e1 = [1,1]
538 >>> e2 = [1,4]
539 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
540 >>> SLG.dimension()
541 2
542
543 """
544 return self.K().dimension()
545
546
547 def _zero(self):
548 """
549 Return a column of zeros that fits ``K``.
550
551 This is used in our CVXOPT construction.
552
553 .. warning::
554
555 It is not safe to cache any of the matrices passed to
556 CVXOPT, because it can clobber them.
557
558 Returns
559 -------
560
561 matrix
562 A ``self.dimension()``-by-``1`` column vector of zeros.
563
564 Examples
565 --------
566
567 >>> from dunshire import *
568 >>> K = NonnegativeOrthant(3)
569 >>> L = identity(3)
570 >>> e1 = [1,1,1]
571 >>> e2 = e1
572 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
573 >>> print(SLG._zero())
574 [0.0000000]
575 [0.0000000]
576 [0.0000000]
577 <BLANKLINE>
578
579 """
580 return matrix(0, (self.dimension(), 1), tc='d')
581
582
583 def A(self):
584 """
585 Return the matrix ``A`` used in our CVXOPT construction.
586
587 This matrix ``A`` appears on the right-hand side of ``Ax = b``
588 in the statement of the CVXOPT conelp program.
589
590 .. warning::
591
592 It is not safe to cache any of the matrices passed to
593 CVXOPT, because it can clobber them.
594
595 Returns
596 -------
597
598 matrix
599 A ``1``-by-``(1 + self.dimension())`` row vector. Its first
600 entry is zero, and the rest are the entries of ``e2``.
601
602 Examples
603 --------
604
605 >>> from dunshire import *
606 >>> K = NonnegativeOrthant(3)
607 >>> L = [[1,1,1],[1,1,1],[1,1,1]]
608 >>> e1 = [1,1,1]
609 >>> e2 = [1,2,3]
610 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
611 >>> print(SLG.A())
612 [0.0000000 1.0000000 2.0000000 3.0000000]
613 <BLANKLINE>
614
615 """
616 return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
617
618
619
620 def _G(self):
621 r"""
622 Return the matrix ``G`` used in our CVXOPT construction.
623
624 Thus matrix ``G`` appears on the left-hand side of ``Gx + s = h``
625 in the statement of the CVXOPT conelp program.
626
627 .. warning::
628
629 It is not safe to cache any of the matrices passed to
630 CVXOPT, because it can clobber them.
631
632 Returns
633 -------
634
635 matrix
636 A ``2*self.dimension()``-by-``(1 + self.dimension())`` matrix.
637
638 Examples
639 --------
640
641 >>> from dunshire import *
642 >>> K = NonnegativeOrthant(3)
643 >>> L = [[4,5,6],[7,8,9],[10,11,12]]
644 >>> e1 = [1,2,3]
645 >>> e2 = [1,1,1]
646 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
647 >>> print(SLG._G())
648 [ 0.0000000 -1.0000000 0.0000000 0.0000000]
649 [ 0.0000000 0.0000000 -1.0000000 0.0000000]
650 [ 0.0000000 0.0000000 0.0000000 -1.0000000]
651 [ 1.0000000 -4.0000000 -5.0000000 -6.0000000]
652 [ 2.0000000 -7.0000000 -8.0000000 -9.0000000]
653 [ 3.0000000 -10.0000000 -11.0000000 -12.0000000]
654 <BLANKLINE>
655
656 """
657 identity_matrix = identity(self.dimension())
658 return append_row(append_col(self._zero(), -identity_matrix),
659 append_col(self.e1(), -self.L()))
660
661
662 def _c(self):
663 """
664 Return the vector ``c`` used in our CVXOPT construction.
665
666 The column vector ``c`` appears in the objective function
667 value ``<c,x>`` in the statement of the CVXOPT conelp program.
668
669 .. warning::
670
671 It is not safe to cache any of the matrices passed to
672 CVXOPT, because it can clobber them.
673
674 Returns
675 -------
676
677 matrix
678 A ``self.dimension()``-by-``1`` column vector.
679
680 Examples
681 --------
682
683 >>> from dunshire import *
684 >>> K = NonnegativeOrthant(3)
685 >>> L = [[4,5,6],[7,8,9],[10,11,12]]
686 >>> e1 = [1,2,3]
687 >>> e2 = [1,1,1]
688 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
689 >>> print(SLG._c())
690 [-1.0000000]
691 [ 0.0000000]
692 [ 0.0000000]
693 [ 0.0000000]
694 <BLANKLINE>
695
696 """
697 return matrix([-1, self._zero()])
698
699
700 def C(self):
701 """
702 Return the cone ``C`` used in our CVXOPT construction.
703
704 The cone ``C`` is the cone over which the conelp program takes
705 place.
706
707 Returns
708 -------
709
710 CartesianProduct
711 The cartesian product of ``K`` with itself.
712
713 Examples
714 --------
715
716 >>> from dunshire import *
717 >>> K = NonnegativeOrthant(3)
718 >>> L = [[4,5,6],[7,8,9],[10,11,12]]
719 >>> e1 = [1,2,3]
720 >>> e2 = [1,1,1]
721 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
722 >>> print(SLG.C())
723 Cartesian product of dimension 6 with 2 factors:
724 * Nonnegative orthant in the real 3-space
725 * Nonnegative orthant in the real 3-space
726
727 """
728 return CartesianProduct(self._K, self._K)
729
730 def _h(self):
731 """
732 Return the ``h`` vector used in our CVXOPT construction.
733
734 The ``h`` vector appears on the right-hand side of :math:`Gx + s
735 = h` in the statement of the CVXOPT conelp program.
736
737 .. warning::
738
739 It is not safe to cache any of the matrices passed to
740 CVXOPT, because it can clobber them.
741
742 Returns
743 -------
744
745 matrix
746 A ``2*self.dimension()``-by-``1`` column vector of zeros.
747
748 Examples
749 --------
750
751 >>> from dunshire import *
752 >>> K = NonnegativeOrthant(3)
753 >>> L = [[4,5,6],[7,8,9],[10,11,12]]
754 >>> e1 = [1,2,3]
755 >>> e2 = [1,1,1]
756 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
757 >>> print(SLG._h())
758 [0.0000000]
759 [0.0000000]
760 [0.0000000]
761 [0.0000000]
762 [0.0000000]
763 [0.0000000]
764 <BLANKLINE>
765
766 """
767
768 return matrix([self._zero(), self._zero()])
769
770
771 @staticmethod
772 def b():
773 """
774 Return the ``b`` vector used in our CVXOPT construction.
775
776 The vector ``b`` appears on the right-hand side of :math:`Ax =
777 b` in the statement of the CVXOPT conelp program.
778
779 This method is static because the dimensions and entries of
780 ``b`` are known beforehand, and don't depend on any other
781 properties of the game.
782
783 .. warning::
784
785 It is not safe to cache any of the matrices passed to
786 CVXOPT, because it can clobber them.
787
788 Returns
789 -------
790
791 matrix
792 A ``1``-by-``1`` matrix containing a single entry ``1``.
793
794 Examples
795 --------
796
797 >>> from dunshire import *
798 >>> K = NonnegativeOrthant(3)
799 >>> L = [[4,5,6],[7,8,9],[10,11,12]]
800 >>> e1 = [1,2,3]
801 >>> e2 = [1,1,1]
802 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
803 >>> print(SLG.b())
804 [1.0000000]
805 <BLANKLINE>
806
807 """
808 return matrix([1], tc='d')
809
810
811 def player1_start(self):
812 """
813 Return a feasible starting point for player one.
814
815 This starting point is for the CVXOPT formulation and not for
816 the original game. The basic premise is that if you normalize
817 :meth:`e2`, then you get a point in :meth:`K` that makes a unit
818 inner product with :meth:`e2`. We then get to choose the primal
819 objective function value such that the constraint involving
820 :meth:`L` is satisfied.
821 """
822 p = self.e2() / (norm(self.e2()) ** 2)
823 dist = self.K().ball_radius(self.e1())
824 nu = - specnorm(self.L())/(dist*norm(self.e2()))
825 x = matrix([nu, p], (self.dimension() + 1, 1))
826 s = - self._G()*x
827
828 return {'x': x, 's': s}
829
830
831 def player2_start(self):
832 """
833 Return a feasible starting point for player two.
834 """
835 q = self.e1() / (norm(self.e1()) ** 2)
836 dist = self.K().ball_radius(self.e2())
837 omega = specnorm(self.L())/(dist*norm(self.e1()))
838 y = matrix([omega])
839 z2 = q
840 z1 = y*self.e2() - self.L().trans()*z2
841 z = matrix([z1, z2], (self.dimension()*2, 1))
842
843 return {'y': y, 'z': z}
844
845
846 def solution(self):
847 """
848 Solve this linear game and return a :class:`Solution`.
849
850 Returns
851 -------
852
853 :class:`Solution`
854 A :class:`Solution` object describing the game's value and
855 the optimal strategies of both players.
856
857 Raises
858 ------
859 GameUnsolvableException
860 If the game could not be solved (if an optimal solution to its
861 associated cone program was not found).
862
863 PoorScalingException
864 If the game could not be solved because CVXOPT crashed while
865 trying to take the square root of a negative number.
866
867 Examples
868 --------
869
870 This example is computed in Gowda and Ravindran in the section
871 "The value of a Z-transformation"::
872
873 >>> from dunshire import *
874 >>> K = NonnegativeOrthant(3)
875 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
876 >>> e1 = [1,1,1]
877 >>> e2 = [1,1,1]
878 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
879 >>> print(SLG.solution())
880 Game value: -6.172...
881 Player 1 optimal:
882 [0.551...]
883 [0.000...]
884 [0.448...]
885 Player 2 optimal:
886 [0.448...]
887 [0.000...]
888 [0.551...]
889
890 The value of the following game can be computed using the fact
891 that the identity is invertible::
892
893 >>> from dunshire import *
894 >>> K = NonnegativeOrthant(3)
895 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
896 >>> e1 = [1,2,3]
897 >>> e2 = [4,5,6]
898 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
899 >>> print(SLG.solution())
900 Game value: 0.031...
901 Player 1 optimal:
902 [0.031...]
903 [0.062...]
904 [0.093...]
905 Player 2 optimal:
906 [0.125...]
907 [0.156...]
908 [0.187...]
909
910 This is another Gowda/Ravindran example that is supposed to have
911 a negative game value::
912
913 >>> from dunshire import *
914 >>> from dunshire.options import ABS_TOL
915 >>> L = [[1, -2], [-2, 1]]
916 >>> K = NonnegativeOrthant(2)
917 >>> e1 = [1, 1]
918 >>> e2 = e1
919 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
920 >>> SLG.solution().game_value() < -ABS_TOL
921 True
922
923 The following two games are problematic numerically, but we
924 should be able to solve them::
925
926 >>> from dunshire import *
927 >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
928 ... [ 1.30481749924621448500, 1.65278664543326403447]]
929 >>> K = NonnegativeOrthant(2)
930 >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
931 >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
932 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
933 >>> print(SLG.solution())
934 Game value: 18.767...
935 Player 1 optimal:
936 [0.000...]
937 [9.766...]
938 Player 2 optimal:
939 [1.047...]
940 [0.000...]
941
942 ::
943
944 >>> from dunshire import *
945 >>> L = [[1.54159395026049472754, 2.21344728574316684799],
946 ... [1.33147433507846657541, 1.17913616272988108769]]
947 >>> K = NonnegativeOrthant(2)
948 >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
949 >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
950 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
951 >>> print(SLG.solution())
952 Game value: 24.614...
953 Player 1 optimal:
954 [6.371...]
955 [0.000...]
956 Player 2 optimal:
957 [2.506...]
958 [0.000...]
959
960 """
961 try:
962 opts = {'show_progress': False}
963 soln_dict = solvers.conelp(self._c(),
964 self._G(),
965 self._h(),
966 self.C().cvxopt_dims(),
967 self.A(),
968 self.b(),
969 primalstart=self.player1_start(),
970 options=opts)
971 except ValueError as error:
972 if str(error) == 'math domain error':
973 # Oops, CVXOPT tried to take the square root of a
974 # negative number. Report some details about the game
975 # rather than just the underlying CVXOPT crash.
976 printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
977 raise PoorScalingException(self)
978 else:
979 raise error
980
981 # The optimal strategies are named ``p`` and ``q`` in the
982 # background documentation, and we need to extract them from
983 # the CVXOPT ``x`` and ``z`` variables. The objective values
984 # :math:`nu` and :math:`omega` can also be found in the CVXOPT
985 # ``x`` and ``y`` variables; however, they're stored
986 # conveniently as separate entries in the solution dictionary.
987 p1_value = -soln_dict['primal objective']
988 p2_value = -soln_dict['dual objective']
989 p1_optimal = soln_dict['x'][1:]
990 p2_optimal = soln_dict['z'][self.dimension():]
991
992 # The "status" field contains "optimal" if everything went
993 # according to plan. Other possible values are "primal
994 # infeasible", "dual infeasible", "unknown", all of which mean
995 # we didn't get a solution.
996 #
997 # The "infeasible" ones are the worst, since they indicate
998 # that CVXOPT is convinced the problem is infeasible (and that
999 # cannot happen).
1000 if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
1001 printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
1002 raise GameUnsolvableException(self, soln_dict)
1003
1004 # The "optimal" and "unknown" results, we actually treat the
1005 # same. Even if CVXOPT bails out due to numerical difficulty,
1006 # it will have some candidate points in mind. If those
1007 # candidates are good enough, we take them. We do the same
1008 # check (perhaps pointlessly so) for "optimal" results.
1009 #
1010 # First we check that the primal/dual objective values are
1011 # close enough (one could be low by ABS_TOL, the other high by
1012 # it) because otherwise CVXOPT might return "unknown" and give
1013 # us two points in the cone that are nowhere near optimal.
1014 if abs(p1_value - p2_value) > 2*options.ABS_TOL:
1015 printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
1016 raise GameUnsolvableException(self, soln_dict)
1017
1018 # And we also check that the points it gave us belong to the
1019 # cone, just in case...
1020 if (p1_optimal not in self._K) or (p2_optimal not in self._K):
1021 printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
1022 raise GameUnsolvableException(self, soln_dict)
1023
1024 # For the game value, we could use any of:
1025 #
1026 # * p1_value
1027 # * p2_value
1028 # * (p1_value + p2_value)/2
1029 # * the game payoff
1030 #
1031 # We want the game value to be the payoff, however, so it
1032 # makes the most sense to just use that, even if it means we
1033 # can't test the fact that p1_value/p2_value are close to the
1034 # payoff.
1035 payoff = self.payoff(p1_optimal, p2_optimal)
1036 return Solution(payoff, p1_optimal, p2_optimal)
1037
1038
1039 def condition(self):
1040 r"""
1041 Return the condition number of this game.
1042
1043 In the CVXOPT construction of this game, two matrices ``G`` and
1044 ``A`` appear. When those matrices are nasty, numerical problems
1045 can show up. We define the condition number of this game to be
1046 the average of the condition numbers of ``G`` and ``A`` in the
1047 CVXOPT construction. If the condition number of this game is
1048 high, then you can expect numerical difficulty (such as
1049 :class:`PoorScalingException`).
1050
1051 Returns
1052 -------
1053
1054 float
1055 A real number greater than or equal to one that measures how
1056 bad this game is numerically.
1057
1058 Examples
1059 --------
1060
1061 >>> from dunshire import *
1062 >>> K = NonnegativeOrthant(1)
1063 >>> L = [[1]]
1064 >>> e1 = [1]
1065 >>> e2 = e1
1066 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
1067 >>> actual = SLG.condition()
1068 >>> expected = 1.8090169943749477
1069 >>> abs(actual - expected) < options.ABS_TOL
1070 True
1071
1072 """
1073 return (condition_number(self._G()) + condition_number(self.A()))/2
1074
1075
1076 def dual(self):
1077 r"""
1078 Return the dual game to this game.
1079
1080 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
1081 then its dual is :math:`G^{*} =
1082 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
1083 is symmetric, :math:`K^{*} = K`.
1084
1085 Examples
1086 --------
1087
1088 >>> from dunshire import *
1089 >>> K = NonnegativeOrthant(3)
1090 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
1091 >>> e1 = [1,1,1]
1092 >>> e2 = [1,2,3]
1093 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
1094 >>> print(SLG.dual())
1095 The linear game (L, K, e1, e2) where
1096 L = [ 1 -1 -12]
1097 [ -5 2 -15]
1098 [-15 -3 1],
1099 K = Nonnegative orthant in the real 3-space,
1100 e1 = [ 1]
1101 [ 2]
1102 [ 3],
1103 e2 = [ 1]
1104 [ 1]
1105 [ 1],
1106 Condition((L, K, e1, e2)) = 44.476...
1107
1108 """
1109 # We pass ``self.L()`` right back into the constructor, because
1110 # it will be transposed there. And keep in mind that ``self._K``
1111 # is its own dual.
1112 return SymmetricLinearGame(self.L(),
1113 self.K(),
1114 self.e2(),
1115 self.e1())