]> gitweb.michael.orlitzky.com - numerical-analysis.git/blobdiff - src/Vector.hs
Bump to fixed-vector-0.2.*.
[numerical-analysis.git] / src / Vector.hs
index 97bb5d8aea2c94a8100ed981bff988d6a9df60ab..1aaf78daa42e31ca0eae5e106b52aa3827276882 100644 (file)
+{-# LANGUAGE FlexibleContexts #-}
 {-# LANGUAGE FlexibleInstances #-}
+{-# LANGUAGE MultiParamTypeClasses #-}
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# LANGUAGE TypeFamilies #-}
 
--- | The 'Vector' class represents elements of a normed vector
---   space. We define instances for all common numeric types.
 module Vector
 where
 
-import Data.Number.BigFloat
+import Data.List (intercalate)
+import Data.Vector.Fixed (
+  Dim,
+  Fun(..),
+  N2,
+  N3,
+  N4,
+  Vector(..),
+  construct,
+  inspect,
+  toList,
+  )
+import qualified Data.Vector.Fixed as V (
+  eq,
+  foldl,
+  length,
+  map,
+  replicate,
+  sum,
+  zipWith
+  )
 
-class (Num a) => Vector a where
-  norm :: RealFrac b => a -> b
+import Normed
 
--- Define instances for common numeric types.
-instance Vector Integer where
-  norm = fromInteger
+-- | The Vn newtype simply wraps (Vector v a) so that we avoid
+--   undecidable instances.
+newtype Vn v a = Vn (v a)
 
-instance Vector Rational where
-  norm = fromRational
+-- | Declare the dimension of the wrapper to be the dimension of what
+--   it contains.
+type instance Dim (Vn v) = Dim v
 
-instance Epsilon e => Vector (BigFloat e) where
-  norm = fromRational . toRational
+instance (Vector v a) => Vector (Vn v) a where
+  -- | Fortunately, 'Fun' is an instance of 'Functor'. The
+  --   'construct' defined on our contained type will return a
+  --   'Fun', and we simply slap our constructor on top with fmap.
+  construct = fmap Vn construct
 
-instance Vector Double where
-  norm = fromRational . toRational
+  -- | Defer to the inspect defined on the contained type.
+  inspect (Vn v1) = inspect v1
+
+instance (Show a, Vector v a) => Show (Vn v a) where
+  -- | Display vectors as ordinary tuples. This is poor practice, but
+  --   these results are primarily displayed interactively and
+  --   convenience trumps correctness (said the guy who insists his
+  --   vector lengths be statically checked at compile-time).
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = make2d (1,2)
+  --   >>> show v1
+  --   (1,2)
+  --
+  show (Vn v1) =
+    "(" ++ (intercalate "," element_strings) ++ ")"
+    where
+      v1l = toList v1
+      element_strings = Prelude.map show v1l
+
+
+-- | We would really like to say, "anything that is a vector of
+--   equatable things is itself equatable." The 'Vn' class
+--   allows us to express this without a GHC battle.
+--
+--   Examples:
+--
+--   >>> let v1 = make2d (1,2)
+--   >>> let v2 = make2d (1,2)
+--   >>> let v3 = make2d (3,4)
+--   >>> v1 == v2
+--   True
+--   >>> v1 == v3
+--   False
+--
+instance (Eq a, Vector v a) => Eq (Vn v a) where
+  (Vn v1) == (Vn v2) = v1 `V.eq` v2
+
+
+-- | The use of 'Num' here is of course incorrect (otherwise, we
+--   wouldn't have to throw errors). But it's really nice to be able
+--   to use normal addition/subtraction.
+instance (Num a, Vector v a) => Num (Vn v a) where
+  -- | Componentwise addition.
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = make2d (1,2)
+  --   >>> let v2 = make2d (3,4)
+  --   >>> v1 + v2
+  --   (4,6)
+  --
+  (Vn v1) + (Vn v2) = Vn $ V.zipWith (+) v1 v2
+
+  -- | Componentwise subtraction.
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = make2d (1,2)
+  --   >>> let v2 = make2d (3,4)
+  --   >>> v1 - v2
+  --   (-2,-2)
+  --
+  (Vn v1) - (Vn v2) = Vn $ V.zipWith (-) v1 v2
+
+  -- | Create an n-vector whose components are all equal to the given
+  --   integer. The result type must be specified since otherwise the
+  --   length n would be unknown.
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = fromInteger 17 :: Vn Vec3 Int
+  --   (17,17,17)
+  --
+  fromInteger x = Vn $ V.replicate (fromInteger x)
+  (*) = error "multiplication of vectors is undefined"
+  abs = error "absolute value of vectors is undefined"
+  signum = error "signum of vectors is undefined"
+
+
+-- | This is probably useless, since the vectors we usually contain
+--   aren't functor instances.
+instance (Functor v) => Functor (Vn v) where
+  fmap f (Vn v1) = Vn (f `fmap` v1)
+
+
+instance (RealFloat a, Ord a, Vector v a) => Normed (Vn v a) where
+  -- | The infinity norm. We don't use V.maximum here because it
+  --   relies on a type constraint that the vector be non-empty and I
+  --   don't know how to pattern match it away.
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = make3d (1,5,2)
+  --   >>> norm_infty v1
+  --   5
+  --
+  norm_infty (Vn v1) = realToFrac $ V.foldl max 0 v1
+
+  -- | Generic p-norms. The usual norm in R^n is (norm_p 2).
+  --
+  --   Examples:
+  --
+  --   >>> let v1 = make2d (3,4)
+  --   >>> norm_p 1 v1
+  --   7.0
+  --   >>> norm_p 2 v1
+  --   5.0
+  --
+  norm_p p (Vn v1) =
+    realToFrac $ root $ V.sum $ V.map (exponentiate . abs) v1
+    where
+      exponentiate = (** (fromIntegral p))
+      root = (** (recip (fromIntegral p)))
+
+-- | Dot (standard inner) product.
+--
+--   Examples:
+--
+--   >>> let v1 = make3d (1,2,3)
+--   >>> let v2 = make3d (4,5,6)
+--   >>> dot v1 v2
+--   32
+--
+dot :: (Num a, Vector v a) => Vn v a -> Vn v a -> a
+dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2
+
+
+-- | The angle between @v1@ and @v2@ in Euclidean space.
+--
+--   Examples:
+--
+--   >>> let v1 = make2d (1.0, 0.0)
+--   >>> let v2 = make2d (0.0, 1.0)
+--   >>> angle v1 v2 == pi/2.0
+--   True
+--
+angle :: (RealFloat a, Vector v a) => Vn v a -> Vn v a -> a
+angle v1 v2 =
+  acos theta
+  where
+    theta = (v1 `dot` v2) / norms
+    norms = (norm v1) * (norm v2)
+
+
+-- | Unsafe indexing.
+--
+--   Examples:
+--
+--   >>> let v1 = make2d (1,2)
+--   >>> v1 ! 1
+--   2
+--
+(!) :: (Vector v a) => v a -> Int -> a
+(!) v1 idx = (toList v1) !! idx
+
+-- | Safe indexing.
+--
+--   Examples:
+--
+--   >>> let v1 = make3d (1,2,3)
+--   >>> v1 !? 2
+--   Just 3
+--   >>> v1 !? 3
+--   Nothing
+--
+(!?) :: (Vector v a) => v a -> Int -> Maybe a
+(!?) v1 idx
+  | idx < 0 || idx >= V.length v1 = Nothing
+  | otherwise                     = Just $ v1 ! idx
+
+
+
+
+-- * Low-dimension vector wrappers.
+--
+-- These wrappers are instances of 'Vector', so they inherit all of
+-- the userful instances defined above. But, they use fixed
+-- constructors, so you can pattern match out the individual
+-- components.
+
+-- | Convenient constructor for 2D vectors.
+--
+--   Examples:
+--
+--   >>> import Roots.Simple
+--   >>> let h = 0.5 :: Double
+--   >>> let g1 (Vn (Vec2D x y)) = 1.0 + h*exp(-(x^2))/(1.0 + y^2)
+--   >>> let g2 (Vn (Vec2D x y)) = 0.5 + h*atan(x^2 + y^2)
+--   >>> let g u = make2d ((g1 u), (g2 u))
+--   >>> let u0 = make2d (1.0, 1.0)
+--   >>> let eps = 1/(10^9)
+--   >>> fixed_point g eps u0
+--   (1.0728549599342185,1.0820591495686167)
+--
+data Vec2D a = Vec2D a a
+type instance Dim Vec2D = N2
+instance Vector Vec2D a where
+  inspect (Vec2D x y) (Fun f) = f x y
+  construct = Fun Vec2D
+
+data Vec3D a = Vec3D a a a
+type instance Dim Vec3D = N3
+instance Vector Vec3D a where
+  inspect (Vec3D x y z) (Fun f) = f x y z
+  construct = Fun Vec3D
+
+data Vec4D a = Vec4D a a a a
+type instance Dim Vec4D = N4
+instance Vector Vec4D a where
+  inspect (Vec4D w x y z) (Fun f) = f w x y z
+  construct = Fun Vec4D
+
+
+-- | Convenience function for creating 2d vectors.
+--
+--   Examples:
+--
+--   >>> let v1 = make2d (1,2)
+--   >>> v1
+--   (1,2)
+--   >>> let Vn (Vec2D x y) = v1
+--   >>> (x,y)
+--   (1,2)
+--
+make2d :: forall a. (a,a) -> Vn Vec2D a
+make2d (x,y) = Vn (Vec2D x y)
+
+
+-- | Convenience function for creating 3d vectors.
+--
+--   Examples:
+--
+--   >>> let v1 = make3d (1,2,3)
+--   >>> v1
+--   (1,2,3)
+--   >>> let Vn (Vec3D x y z) = v1
+--   >>> (x,y,z)
+--   (1,2,3)
+--
+make3d :: forall a. (a,a,a) -> Vn Vec3D a
+make3d (x,y,z) = Vn (Vec3D x y z)
+
+
+-- | Convenience function for creating 4d vectors.
+--
+--   Examples:
+--
+--   >>> let v1 = make4d (1,2,3,4)
+--   >>> v1
+--   (1,2,3,4)
+--   >>> let Vn (Vec4D w x y z) = v1
+--   >>> (w,x,y,z)
+--   (1,2,3,4)
+--
+make4d :: forall a. (a,a,a,a) -> Vn Vec4D a
+make4d (w,x,y,z) = Vn (Vec4D w x y z)