module Cube where import Data.Maybe (fromJust) import qualified Data.Vector as V ( Vector, findIndex, map, minimum, singleton, snoc, unsafeIndex ) import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose) import Cardinal import qualified Face (Face(Face, v0, v1, v2, v3)) import FunctionValues import Point import Tetrahedron hiding (c, fv) import ThreeDimensional data Cube = Cube { h :: Double, i :: Int, j :: Int, k :: Int, fv :: FunctionValues, tetrahedra_volume :: Double } deriving (Eq) instance Arbitrary Cube where arbitrary = do (Positive h') <- arbitrary :: Gen (Positive Double) i' <- choose (coordmin, coordmax) j' <- choose (coordmin, coordmax) k' <- choose (coordmin, coordmax) fv' <- arbitrary :: Gen FunctionValues (Positive tet_vol) <- arbitrary :: Gen (Positive Double) return (Cube h' i' j' k' fv' tet_vol) where coordmin = -268435456 -- -(2^29 / 2) coordmax = 268435456 -- +(2^29 / 2) instance Show Cube where show c = "Cube_" ++ subscript ++ "\n" ++ " h: " ++ (show (h c)) ++ "\n" ++ " Center: " ++ (show (center c)) ++ "\n" ++ " xmin: " ++ (show (xmin c)) ++ "\n" ++ " xmax: " ++ (show (xmax c)) ++ "\n" ++ " ymin: " ++ (show (ymin c)) ++ "\n" ++ " ymax: " ++ (show (ymax c)) ++ "\n" ++ " zmin: " ++ (show (zmin c)) ++ "\n" ++ " zmax: " ++ (show (zmax c)) ++ "\n" ++ " fv: " ++ (show (Cube.fv c)) ++ "\n" where subscript = (show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c)) -- | Returns an empty 'Cube'. empty_cube :: Cube empty_cube = Cube 0 0 0 0 empty_values 0 -- | The left-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. xmin :: Cube -> Double xmin c = (2*i' - 1)*delta / 2 where i' = fromIntegral (i c) :: Double delta = h c -- | The right-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. xmax :: Cube -> Double xmax c = (2*i' + 1)*delta / 2 where i' = fromIntegral (i c) :: Double delta = h c -- | The front boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. ymin :: Cube -> Double ymin c = (2*j' - 1)*delta / 2 where j' = fromIntegral (j c) :: Double delta = h c -- | The back boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. ymax :: Cube -> Double ymax c = (2*j' + 1)*delta / 2 where j' = fromIntegral (j c) :: Double delta = h c -- | The bottom boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. zmin :: Cube -> Double zmin c = (2*k' - 1)*delta / 2 where k' = fromIntegral (k c) :: Double delta = h c -- | The top boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. zmax :: Cube -> Double zmax c = (2*k' + 1)*delta / 2 where k' = fromIntegral (k c) :: Double delta = h c instance ThreeDimensional Cube where -- | The center of Cube_ijk coincides with v_ijk at -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76. center c = (x, y, z) where delta = h c i' = fromIntegral (i c) :: Double j' = fromIntegral (j c) :: Double k' = fromIntegral (k c) :: Double x = delta * i' y = delta * j' z = delta * k' -- | It's easy to tell if a point is within a cube; just make sure -- that it falls on the proper side of each of the cube's faces. contains_point c (x, y, z) | x < (xmin c) = False | x > (xmax c) = False | y < (ymin c) = False | y > (ymax c) = False | z < (zmin c) = False | z > (zmax c) = False | otherwise = True -- Face stuff. -- | The top (in the direction of z) face of the cube. top_face :: Cube -> Face.Face top_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (delta, -delta, delta) v1' = (center c) + (delta, delta, delta) v2' = (center c) + (-delta, delta, delta) v3' = (center c) + (-delta, -delta, delta) -- | The back (in the direction of x) face of the cube. back_face :: Cube -> Face.Face back_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (delta, -delta, -delta) v1' = (center c) + (delta, delta, -delta) v2' = (center c) + (delta, delta, delta) v3' = (center c) + (delta, -delta, delta) -- The bottom face (in the direction of -z) of the cube. down_face :: Cube -> Face.Face down_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (-delta, -delta, -delta) v1' = (center c) + (-delta, delta, -delta) v2' = (center c) + (delta, delta, -delta) v3' = (center c) + (delta, -delta, -delta) -- | The front (in the direction of -x) face of the cube. front_face :: Cube -> Face.Face front_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (-delta, -delta, delta) v1' = (center c) + (-delta, delta, delta) v2' = (center c) + (-delta, delta, -delta) v3' = (center c) + (-delta, -delta, -delta) -- | The left (in the direction of -y) face of the cube. left_face :: Cube -> Face.Face left_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (delta, -delta, delta) v1' = (center c) + (-delta, -delta, delta) v2' = (center c) + (-delta, -delta, -delta) v3' = (center c) + (delta, -delta, -delta) -- | The right (in the direction of y) face of the cube. right_face :: Cube -> Face.Face right_face c = Face.Face v0' v1' v2' v3' where delta = (1/2)*(h c) v0' = (center c) + (-delta, delta, delta) v1' = (center c) + (delta, delta, delta) v2' = (center c) + (delta, delta, -delta) v3' = (center c) + (-delta, delta, -delta) tetrahedron :: Cube -> Int -> Tetrahedron tetrahedron c 0 = Tetrahedron (Cube.fv c) v0' v1' v2' v3' vol where v0' = center c v1' = center (front_face c) v2' = Face.v0 (front_face c) v3' = Face.v1 (front_face c) vol = tetrahedra_volume c tetrahedron c 1 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (front_face c) v2' = Face.v1 (front_face c) v3' = Face.v2 (front_face c) fv' = rotate ccwx (Cube.fv c) vol = tetrahedra_volume c tetrahedron c 2 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (front_face c) v2' = Face.v2 (front_face c) v3' = Face.v3 (front_face c) fv' = rotate ccwx $ rotate ccwx $ Cube.fv c vol = tetrahedra_volume c tetrahedron c 3 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (front_face c) v2' = Face.v3 (front_face c) v3' = Face.v0 (front_face c) fv' = rotate cwx (Cube.fv c) vol = tetrahedra_volume c tetrahedron c 4 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (top_face c) v2' = Face.v0 (top_face c) v3' = Face.v1 (top_face c) fv' = rotate cwy (Cube.fv c) vol = tetrahedra_volume c tetrahedron c 5 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (top_face c) v2' = Face.v1 (top_face c) v3' = Face.v2 (top_face c) fv' = rotate cwy $ rotate cwz $ fv c vol = tetrahedra_volume c tetrahedron c 6 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (top_face c) v2' = Face.v2 (top_face c) v3' = Face.v3 (top_face c) fv' = rotate cwy $ rotate cwz $ rotate cwz $ fv c vol = tetrahedra_volume c tetrahedron c 7 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (top_face c) v2' = Face.v3 (top_face c) v3' = Face.v0 (top_face c) fv' = rotate cwy $ rotate ccwz $ fv c vol = tetrahedra_volume c tetrahedron c 8 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (back_face c) v2' = Face.v0 (back_face c) v3' = Face.v1 (back_face c) fv' = rotate cwy $ rotate cwy $ fv c vol = tetrahedra_volume c tetrahedron c 9 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (back_face c) v2' = Face.v1 (back_face c) v3' = Face.v2 (back_face c) fv' = rotate cwy $ rotate cwy $ rotate cwx $ fv c vol = tetrahedra_volume c tetrahedron c 10 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (back_face c) v2' = Face.v2 (back_face c) v3' = Face.v3 (back_face c) fv' = rotate cwy $ rotate cwy $ rotate cwx $ rotate cwx $ fv c vol = tetrahedra_volume c tetrahedron c 11 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (back_face c) v2' = Face.v3 (back_face c) v3' = Face.v0 (back_face c) fv' = rotate cwy $ rotate cwy $ rotate ccwx $ fv c vol = tetrahedra_volume c tetrahedron c 12 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (down_face c) v2' = Face.v0 (down_face c) v3' = Face.v1 (down_face c) fv' = rotate ccwy $ fv c vol = tetrahedra_volume c tetrahedron c 13 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (down_face c) v2' = Face.v1 (down_face c) v3' = Face.v2 (down_face c) fv' = rotate ccwy $ rotate ccwz $ fv c vol = tetrahedra_volume c tetrahedron c 14 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (down_face c) v2' = Face.v2 (down_face c) v3' = Face.v3 (down_face c) fv' = rotate ccwy $ rotate ccwz $ rotate ccwz $ fv c vol = tetrahedra_volume c tetrahedron c 15 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (down_face c) v2' = Face.v3 (down_face c) v3' = Face.v0 (down_face c) fv' = rotate ccwy $ rotate cwz $ fv c vol = tetrahedra_volume c tetrahedron c 16 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (right_face c) v2' = Face.v0 (right_face c) v3' = Face.v1 (right_face c) fv' = rotate ccwz $ fv c vol = tetrahedra_volume c tetrahedron c 17 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (right_face c) v2' = Face.v1 (right_face c) v3' = Face.v2 (right_face c) fv' = rotate ccwz $ rotate cwy $ fv c vol = tetrahedra_volume c tetrahedron c 18 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (right_face c) v2' = Face.v2 (right_face c) v3' = Face.v3 (right_face c) fv' = rotate ccwz $ rotate cwy $ rotate cwy $ fv c vol = tetrahedra_volume c tetrahedron c 19 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (right_face c) v2' = Face.v3 (right_face c) v3' = Face.v0 (right_face c) fv' = rotate ccwz $ rotate ccwy $ fv c vol = tetrahedra_volume c tetrahedron c 20 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (left_face c) v2' = Face.v0 (left_face c) v3' = Face.v1 (left_face c) fv' = rotate cwz $ fv c vol = tetrahedra_volume c tetrahedron c 21 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (left_face c) v2' = Face.v1 (left_face c) v3' = Face.v2 (left_face c) fv' = rotate cwz $ rotate ccwy $ fv c vol = tetrahedra_volume c tetrahedron c 22 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (left_face c) v2' = Face.v2 (left_face c) v3' = Face.v3 (left_face c) fv' = rotate cwz $ rotate ccwy $ rotate ccwy $ fv c vol = tetrahedra_volume c tetrahedron c 23 = Tetrahedron fv' v0' v1' v2' v3' vol where v0' = center c v1' = center (left_face c) v2' = Face.v3 (left_face c) v3' = Face.v0 (left_face c) fv' = rotate cwz $ rotate cwy $ fv c vol = tetrahedra_volume c -- Feels dirty, but whatever. tetrahedron _ _ = error "asked for a nonexistent tetrahedron" -- Only used in tests, so we don't need the added speed -- of Data.Vector. tetrahedra :: Cube -> [Tetrahedron] tetrahedra c = [ tetrahedron c n | n <- [0..23] ] front_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron front_left_top_tetrahedra c = V.singleton (tetrahedron c 0) `V.snoc` (tetrahedron c 3) `V.snoc` (tetrahedron c 6) `V.snoc` (tetrahedron c 7) `V.snoc` (tetrahedron c 20) `V.snoc` (tetrahedron c 21) front_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron front_left_down_tetrahedra c = V.singleton (tetrahedron c 0) `V.snoc` (tetrahedron c 2) `V.snoc` (tetrahedron c 3) `V.snoc` (tetrahedron c 12) `V.snoc` (tetrahedron c 15) `V.snoc` (tetrahedron c 21) front_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron front_right_top_tetrahedra c = V.singleton (tetrahedron c 0) `V.snoc` (tetrahedron c 1) `V.snoc` (tetrahedron c 5) `V.snoc` (tetrahedron c 6) `V.snoc` (tetrahedron c 16) `V.snoc` (tetrahedron c 19) front_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron front_right_down_tetrahedra c = V.singleton (tetrahedron c 1) `V.snoc` (tetrahedron c 2) `V.snoc` (tetrahedron c 12) `V.snoc` (tetrahedron c 13) `V.snoc` (tetrahedron c 18) `V.snoc` (tetrahedron c 19) back_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron back_left_top_tetrahedra c = V.singleton (tetrahedron c 0) `V.snoc` (tetrahedron c 3) `V.snoc` (tetrahedron c 6) `V.snoc` (tetrahedron c 7) `V.snoc` (tetrahedron c 20) `V.snoc` (tetrahedron c 21) back_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron back_left_down_tetrahedra c = V.singleton (tetrahedron c 8) `V.snoc` (tetrahedron c 11) `V.snoc` (tetrahedron c 14) `V.snoc` (tetrahedron c 15) `V.snoc` (tetrahedron c 22) `V.snoc` (tetrahedron c 23) back_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron back_right_top_tetrahedra c = V.singleton (tetrahedron c 4) `V.snoc` (tetrahedron c 5) `V.snoc` (tetrahedron c 9) `V.snoc` (tetrahedron c 10) `V.snoc` (tetrahedron c 16) `V.snoc` (tetrahedron c 17) back_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron back_right_down_tetrahedra c = V.singleton (tetrahedron c 8) `V.snoc` (tetrahedron c 9) `V.snoc` (tetrahedron c 13) `V.snoc` (tetrahedron c 14) `V.snoc` (tetrahedron c 17) `V.snoc` (tetrahedron c 18) in_top_half :: Cube -> Point -> Bool in_top_half c (_,_,z) = distance_from_top <= distance_from_bottom where distance_from_top = abs $ (zmax c) - z distance_from_bottom = abs $ (zmin c) - z in_front_half :: Cube -> Point -> Bool in_front_half c (x,_,_) = distance_from_front <= distance_from_back where distance_from_front = abs $ (xmin c) - x distance_from_back = abs $ (xmax c) - x in_left_half :: Cube -> Point -> Bool in_left_half c (_,y,_) = distance_from_left <= distance_from_right where distance_from_left = abs $ (ymin c) - y distance_from_right = abs $ (ymax c) - y -- | Takes a 'Cube', and returns the Tetrahedra belonging to it that -- contain the given 'Point'. This should be faster than checking -- every tetrahedron individually, since we determine which half -- (hemisphere?) of the cube the point lies in three times: once in -- each dimension. This allows us to eliminate non-candidates -- quickly. -- -- This can throw an exception, but the use of 'head' might -- save us some unnecessary computations. -- find_containing_tetrahedron :: Cube -> Point -> Tetrahedron find_containing_tetrahedron c p = candidates `V.unsafeIndex` (fromJust lucky_idx) where front_half = in_front_half c p top_half = in_top_half c p left_half = in_left_half c p candidates = if front_half then if left_half then if top_half then front_left_top_tetrahedra c else front_left_down_tetrahedra c else if top_half then front_right_top_tetrahedra c else front_right_down_tetrahedra c else -- bottom half if left_half then if top_half then back_left_top_tetrahedra c else back_left_down_tetrahedra c else if top_half then back_right_top_tetrahedra c else back_right_down_tetrahedra c -- Use the dot product instead of 'distance' here to save a -- sqrt(). So, "distances" below really means "distances squared." distances = V.map ((dot p) . center) candidates shortest_distance = V.minimum distances lucky_idx = V.findIndex (\t -> (center t) `dot` p == shortest_distance) candidates