]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - test/symmetric_linear_game_test.py
Remove a superfluous transpose.
[dunshire.git] / test / symmetric_linear_game_test.py
index 936a7e869283b4fd9ee2e82ddccefa5ef7253658..cf305f0ae133699a1be00a3dce8c27c72c9f2a7c 100644 (file)
@@ -4,32 +4,14 @@ Unit tests for the :class:`SymmetricLinearGame` class.
 
 from unittest import TestCase
 
-from dunshire.cones import NonnegativeOrthant
 from dunshire.games import SymmetricLinearGame
-from dunshire.matrices import eigenvalues_re, inner_product
+from dunshire.matrices import eigenvalues_re, inner_product, norm
 from dunshire import options
-from .randomgen import (RANDOM_MAX, random_icecream_game,
-                        random_ll_icecream_game, random_ll_orthant_game,
-                        random_nn_scaling, random_orthant_game,
-                        random_positive_orthant_game, random_translation)
+from .randomgen import (random_icecream_game, random_ll_icecream_game,
+                        random_ll_orthant_game, random_nn_scaling,
+                        random_orthant_game, random_positive_orthant_game,
+                        random_translation)
 
-EPSILON = (1 + RANDOM_MAX)*options.ABS_TOL
-"""
-This is the tolerance constant including fudge factors that we use to
-determine whether or not two numbers are equal in tests.
-
-Often we will want to compare two solutions, say for games that are
-equivalent. If the first game value is low by ``ABS_TOL`` and the second
-is high by ``ABS_TOL``, then the total could be off by ``2*ABS_TOL``. We
-also subject solutions to translations and scalings, which adds to or
-scales their error. If the first game is low by ``ABS_TOL`` and the
-second is high by ``ABS_TOL`` before scaling, then after scaling, the
-second could be high by ``RANDOM_MAX*ABS_TOL``. That is the rationale
-for the factor of ``1 + RANDOM_MAX`` in ``EPSILON``. Since ``1 +
-RANDOM_MAX`` is greater than ``2*ABS_TOL``, we don't need to handle the
-first issue mentioned (both solutions off by the same amount in opposite
-directions).
-"""
 
 # Tell pylint to shut up about the large number of methods.
 class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
@@ -52,73 +34,124 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
         modifier : float
             A scaling factor (default: 1) applied to the default
-            ``EPSILON`` for this comparison. If you have a poorly-
+            tolerance for this comparison. If you have a poorly-
             conditioned matrix, for example, you may want to set this
             greater than one.
 
         """
-        self.assertTrue(abs(first - second) < EPSILON*modifier)
+        self.assertTrue(abs(first - second) < options.ABS_TOL*modifier)
 
 
-    def assert_solution_exists(self, G):
+    def test_solutions_dont_change_orthant(self):
         """
-        Given  a SymmetricLinearGame, ensure that it has a solution.
+        If we solve the same game twice over the nonnegative orthant,
+        then we should get the same solution both times. The solution to
+        a game is not unique, but the process we use is (as far as we
+        know) deterministic.
         """
-        soln = G.solution()
+        G = random_orthant_game()
+        self.assert_solutions_dont_change(G)
 
-        expected = inner_product(G._L*soln.player1_optimal(),
-                                 soln.player2_optimal())
-        self.assert_within_tol(soln.game_value(), expected, G.condition())
+    def test_solutions_dont_change_icecream(self):
+        """
+        If we solve the same game twice over the ice-cream cone, then we
+        should get the same solution both times. The solution to a game
+        is not unique, but the process we use is (as far as we know)
+        deterministic.
+        """
+        G = random_icecream_game()
+        self.assert_solutions_dont_change(G)
 
+    def assert_solutions_dont_change(self, G):
+        """
+        Solve ``G`` twice and check that the solutions agree.
+        """
+        soln1 = G.solution()
+        soln2 = G.solution()
+        p1_diff = norm(soln1.player1_optimal() - soln2.player1_optimal())
+        p2_diff = norm(soln1.player2_optimal() - soln2.player2_optimal())
+        gv_diff = abs(soln1.game_value() - soln2.game_value())
 
+        p1_close = p1_diff < options.ABS_TOL
+        p2_close = p2_diff < options.ABS_TOL
+        gv_close = gv_diff < options.ABS_TOL
 
-    def test_condition_lower_bound(self):
+        self.assertTrue(p1_close and p2_close and gv_close)
+
+
+    def assert_player1_start_valid(self, G):
         """
-        Ensure that the condition number of a game is greater than or
-        equal to one.
+        Ensure that player one's starting point satisfies both the
+        equality and cone inequality in the CVXOPT primal problem.
+        """
+        x = G.player1_start()['x']
+        s = G.player1_start()['s']
+        s1 = s[0:G.dimension()]
+        s2 = s[G.dimension():]
+        self.assert_within_tol(norm(G.A()*x - G.b()), 0)
+        self.assertTrue((s1, s2) in G.C())
 
-        It should be safe to compare these floats directly: we compute
-        the condition number as the ratio of one nonnegative real number
-        to a smaller nonnegative real number.
+
+    def test_player1_start_valid_orthant(self):
+        """
+        Ensure that player one's starting point is feasible over the
+        nonnegative orthant.
         """
         G = random_orthant_game()
-        self.assertTrue(G.condition() >= 1.0)
+        self.assert_player1_start_valid(G)
+
+
+    def test_player1_start_valid_icecream(self):
+        """
+        Ensure that player one's starting point is feasible over the
+        ice-cream cone.
+        """
         G = random_icecream_game()
-        self.assertTrue(G.condition() >= 1.0)
+        self.assert_player1_start_valid(G)
+
+
+    def assert_player2_start_valid(self, G):
+        """
+        Check that player two's starting point satisfies both the
+        cone inequality in the CVXOPT dual problem.
+        """
+        z = G.player2_start()['z']
+        z1 = z[0:G.dimension()]
+        z2 = z[G.dimension():]
+        self.assertTrue((z1, z2) in G.C())
 
 
-    def test_solution_exists_orthant(self):
+    def test_player2_start_valid_orthant(self):
         """
-        Every linear game has a solution, so we should be able to solve
-        every symmetric linear game over the NonnegativeOrthant. Pick
-        some parameters randomly and give it a shot. The resulting
-        optimal solutions should give us the optimal game value when we
-        apply the payoff operator to them.
+        Ensure that player two's starting point is feasible over the
+        nonnegative orthant.
         """
         G = random_orthant_game()
-        self.assert_solution_exists(G)
+        self.assert_player2_start_valid(G)
 
 
-    def test_solution_exists_icecream(self):
+    def test_player2_start_valid_icecream(self):
         """
-        Like :meth:`test_solution_exists_nonnegative_orthant`, except
-        over the ice cream cone.
+        Ensure that player two's starting point is feasible over the
+        ice-cream cone.
         """
         G = random_icecream_game()
-        self.assert_solution_exists(G)
+        self.assert_player2_start_valid(G)
 
 
-    def test_negative_value_z_operator(self):
+    def test_condition_lower_bound(self):
         """
-        Test the example given in Gowda/Ravindran of a Z-matrix with
-        negative game value on the nonnegative orthant.
+        Ensure that the condition number of a game is greater than or
+        equal to one.
+
+        It should be safe to compare these floats directly: we compute
+        the condition number as the ratio of one nonnegative real number
+        to a smaller nonnegative real number.
         """
-        K = NonnegativeOrthant(2)
-        e1 = [1, 1]
-        e2 = e1
-        L = [[1, -2], [-2, 1]]
-        G = SymmetricLinearGame(L, K, e1, e2)
-        self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
+        G = random_orthant_game()
+        self.assertTrue(G.condition() >= 1.0)
+        G = random_icecream_game()
+        self.assertTrue(G.condition() >= 1.0)
 
 
     def assert_scaling_works(self, G):
@@ -127,9 +160,14 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         of the game by the same number.
         """
         (alpha, H) = random_nn_scaling(G)
-        value1 = G.solution().game_value()
-        value2 = H.solution().game_value()
-        self.assert_within_tol(alpha*value1, value2, H.condition())
+        soln1 = G.solution()
+        soln2 = H.solution()
+        value1 = soln1.game_value()
+        value2 = soln2.game_value()
+        modifier1 = G.tolerance_scale(soln1)
+        modifier2 = H.tolerance_scale(soln2)
+        modifier = max(modifier1, modifier2)
+        self.assert_within_tol(alpha*value1, value2, modifier)
 
 
     def test_scaling_orthant(self):
@@ -167,12 +205,11 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         (alpha, H) = random_translation(G)
         value2 = H.solution().game_value()
 
-        self.assert_within_tol(value1 + alpha, value2, H.condition())
+        modifier = G.tolerance_scale(soln1)
+        self.assert_within_tol(value1 + alpha, value2, modifier)
 
         # Make sure the same optimal pair works.
-        self.assert_within_tol(value2,
-                               inner_product(H._L*x_bar, y_bar),
-                               H.condition())
+        self.assert_within_tol(value2, H.payoff(x_bar, y_bar), modifier)
 
 
     def test_translation_orthant(self):
@@ -198,27 +235,26 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         value that is the negation of the original game. Comes from
         some corollary.
         """
-        # This is the "correct" representation of ``M``, but
-        # COLUMN indexed...
-        M = -G._L.trans()
-
-        # so we have to transpose it when we feed it to the constructor.
+        # Since L is a CVXOPT matrix, it will be transposed automatically.
         # Note: the condition number of ``H`` should be comparable to ``G``.
-        H = SymmetricLinearGame(M.trans(), G._K, G._e2, G._e1)
+        H = SymmetricLinearGame(-G.L(), G.K(), G.e2(), G.e1())
 
         soln1 = G.solution()
         x_bar = soln1.player1_optimal()
         y_bar = soln1.player2_optimal()
         soln2 = H.solution()
 
+        modifier = G.tolerance_scale(soln1)
         self.assert_within_tol(-soln1.game_value(),
                                soln2.game_value(),
-                               H.condition())
+                               modifier)
 
-        # Make sure the switched optimal pair works.
+        # Make sure the switched optimal pair works. Since x_bar and
+        # y_bar come from G, we use the same modifier.
         self.assert_within_tol(soln2.game_value(),
-                               inner_product(M*y_bar, x_bar),
-                               H.condition())
+                               H.payoff(y_bar, x_bar),
+                               modifier)
+
 
 
     def test_opposite_game_orthant(self):
@@ -249,11 +285,12 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         y_bar = soln.player2_optimal()
         value = soln.game_value()
 
-        ip1 = inner_product(y_bar, G._L*x_bar - value*G._e1)
-        self.assert_within_tol(ip1, 0, G.condition())
+        ip1 = inner_product(y_bar, G.L()*x_bar - value*G.e1())
+        ip2 = inner_product(value*G.e2() - G.L().trans()*y_bar, x_bar)
 
-        ip2 = inner_product(value*G._e2 - G._L.trans()*y_bar, x_bar)
-        self.assert_within_tol(ip2, 0, G.condition())
+        modifier = G.tolerance_scale(soln)
+        self.assert_within_tol(ip1, 0, modifier)
+        self.assert_within_tol(ip2, 0, modifier)
 
 
     def test_orthogonality_orthant(self):
@@ -298,22 +335,20 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         #
         # See :meth:`assert_within_tol` for an explanation of the
         # fudge factors.
-        eigs = eigenvalues_re(G._L)
+        eigs = eigenvalues_re(G.L())
 
-        if soln.game_value() > EPSILON:
+        if soln.game_value() > options.ABS_TOL:
             # L should be positive stable
             positive_stable = all([eig > -options.ABS_TOL for eig in eigs])
             self.assertTrue(positive_stable)
-        elif soln.game_value() < -EPSILON:
+        elif soln.game_value() < -options.ABS_TOL:
             # L should be negative stable
             negative_stable = all([eig < options.ABS_TOL for eig in eigs])
             self.assertTrue(negative_stable)
 
-        # The dual game's value should always equal the primal's.
         dualsoln = G.dual().solution()
-        self.assert_within_tol(dualsoln.game_value(),
-                               soln.game_value(),
-                               G.condition())
+        mod = G.tolerance_scale(soln)
+        self.assert_within_tol(dualsoln.game_value(), soln.game_value(), mod)
 
 
     def test_lyapunov_orthant(self):