]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
A bunch more doc fixes.
[dunshire.git] / dunshire / games.py
index 6480d7d31153afcc419d331e0cd416a64253a188..ea7a64f6b8e6451a808b464494c11e9be9f0de78 100644 (file)
@@ -4,14 +4,15 @@ Symmetric linear games and their solutions.
 This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
 This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
-
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
-from .matrices import append_col, append_row, condition_number, identity
-from . import options
+from .matrices import (append_col, append_row, condition_number, identity,
+                       inner_product, norm, specnorm)
+from .options import ABS_TOL, FLOAT_FORMAT, DEBUG_FLOAT_FORMAT
+
+printing.options['dformat'] = FLOAT_FORMAT
 
 
-printing.options['dformat'] = options.FLOAT_FORMAT
 
 class Solution:
     """
 
 class Solution:
     """
@@ -22,7 +23,7 @@ class Solution:
     --------
 
         >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
     --------
 
         >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
-        Game value: 10.0000000
+        Game value: 10.000...
         Player 1 optimal:
           [ 1]
           [ 2]
         Player 1 optimal:
           [ 1]
           [ 2]
@@ -178,11 +179,15 @@ class SymmetricLinearGame:
     ----------
 
     L : list of list of float
     ----------
 
     L : list of list of float
-        A matrix represented as a list of ROWS. This representation
-        agrees with (for example) SageMath and NumPy, but not with CVXOPT
-        (whose matrix constructor accepts a list of columns).
-
-    K : :class:`SymmetricCone`
+        A matrix represented as a list of **rows**. This representation
+        agrees with (for example) `SageMath <http://www.sagemath.org/>`_
+        and `NumPy <http://www.numpy.org/>`_, but not with CVXOPT (whose
+        matrix constructor accepts a list of columns). In reality, ``L``
+        can be any iterable type of the correct length; however, you
+        should be extremely wary of the way we interpret anything other
+        than a list of rows.
+
+    K : dunshire.cones.SymmetricCone
         The symmetric cone instance over which the game is played.
 
     e1 : iterable float
         The symmetric cone instance over which the game is played.
 
     e1 : iterable float
@@ -219,8 +224,7 @@ class SymmetricLinearGame:
                [ 1],
           e2 = [ 1]
                [ 2]
                [ 1],
           e2 = [ 1]
                [ 2]
-               [ 3],
-          Condition((L, K, e1, e2)) = 31.834...
+               [ 3]
 
     Lists can (and probably should) be used for every argument::
 
 
     Lists can (and probably should) be used for every argument::
 
@@ -238,8 +242,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 1.707...
+               [ 1]
 
     The points ``e1`` and ``e2`` can also be passed as some other
     enumerable type (of the correct length) without much harm, since
 
     The points ``e1`` and ``e2`` can also be passed as some other
     enumerable type (of the correct length) without much harm, since
@@ -261,8 +264,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 1.707...
+               [ 1]
 
     However, ``L`` will always be intepreted as a list of rows, even
     if it is passed as a :class:`cvxopt.base.matrix` which is
 
     However, ``L`` will always be intepreted as a list of rows, even
     if it is passed as a :class:`cvxopt.base.matrix` which is
@@ -283,8 +285,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 6.073...
+               [ 1]
         >>> L = cvxopt.matrix(L)
         >>> print(L)
         [ 1  3]
         >>> L = cvxopt.matrix(L)
         >>> print(L)
         [ 1  3]
@@ -299,8 +300,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 6.073...
+               [ 1]
 
     """
     def __init__(self, L, K, e1, e2):
 
     """
     def __init__(self, L, K, e1, e2):
@@ -322,6 +322,8 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
+        # Initial value of cached method.
+        self._L_specnorm_value = None
 
 
     def __str__(self):
 
 
     def __str__(self):
@@ -332,17 +334,213 @@ class SymmetricLinearGame:
               '  L = {:s},\n' \
               '  K = {!s},\n' \
               '  e1 = {:s},\n' \
               '  L = {:s},\n' \
               '  K = {!s},\n' \
               '  e1 = {:s},\n' \
-              '  e2 = {:s},\n' \
-              '  Condition((L, K, e1, e2)) = {:f}.'
-        indented_L = '\n      '.join(str(self._L).splitlines())
-        indented_e1 = '\n       '.join(str(self._e1).splitlines())
-        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+              '  e2 = {:s}'
+        indented_L = '\n      '.join(str(self.L()).splitlines())
+        indented_e1 = '\n       '.join(str(self.e1()).splitlines())
+        indented_e2 = '\n       '.join(str(self.e2()).splitlines())
 
         return tpl.format(indented_L,
 
         return tpl.format(indented_L,
-                          str(self._K),
+                          str(self.K()),
                           indented_e1,
                           indented_e1,
-                          indented_e2,
-                          self.condition())
+                          indented_e2)
+
+
+    def L(self):
+        """
+        Return the matrix ``L`` passed to the constructor.
+
+        Returns
+        -------
+
+        matrix
+            The matrix that defines this game's :meth:`payoff` operator.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.L())
+            [  1  -5 -15]
+            [ -1   2  -3]
+            [-12 -15   1]
+            <BLANKLINE>
+
+        """
+        return self._L
+
+
+    def K(self):
+        """
+        Return the cone over which this game is played.
+
+        Returns
+        -------
+
+        SymmetricCone
+            The :class:`SymmetricCone` over which this game is played.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.K())
+            Nonnegative orthant in the real 3-space
+
+        """
+        return self._K
+
+
+    def e1(self):
+        """
+        Return player one's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e1())
+            [ 1]
+            [ 1]
+            [ 1]
+            <BLANKLINE>
+
+        """
+        return self._e1
+
+
+    def e2(self):
+        """
+        Return player two's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e2())
+            [ 1]
+            [ 2]
+            [ 3]
+            <BLANKLINE>
+
+        """
+        return self._e2
+
+
+    def payoff(self, strategy1, strategy2):
+        r"""
+        Return the payoff associated with ``strategy1`` and ``strategy2``.
+
+        The payoff operator takes pairs of strategies to a real
+        number. For example, if player one's strategy is :math:`x` and
+        player two's strategy is :math:`y`, then the associated payoff
+        is :math:`\left\langle L\left(x\right),y \right\rangle \in
+        \mathbb{R}`. Here, :math:`L` denotes the same linear operator as
+        :meth:`L`. This method computes the payoff given the two
+        players' strategies.
+
+        Parameters
+        ----------
+
+        strategy1 : matrix
+            Player one's strategy.
+
+        strategy2 : matrix
+            Player two's strategy.
+
+        Returns
+        -------
+
+        float
+            The payoff for the game when player one plays ``strategy1``
+            and player two plays ``strategy2``.
+
+        Examples
+        --------
+
+        The value of the game should be the payoff at the optimal
+        strategies::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> soln = SLG.solution()
+            >>> x_bar = soln.player1_optimal()
+            >>> y_bar = soln.player2_optimal()
+            >>> SLG.payoff(x_bar, y_bar) == soln.game_value()
+            True
+
+        """
+        return inner_product(self.L()*strategy1, strategy2)
+
+
+    def dimension(self):
+        """
+        Return the dimension of this game.
+
+        The dimension of a game is not needed for the theory, but it is
+        useful for the implementation. We define the dimension of a game
+        to be the dimension of its underlying cone. Or what is the same,
+        the dimension of the space from which the strategies are chosen.
+
+        Returns
+        -------
+
+        int
+            The dimension of the cone :meth:`K`, or of the space where
+            this game is played.
+
+        Examples
+        --------
+
+        The dimension of a game over the nonnegative quadrant in the
+        plane should be two (the dimension of the plane)::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,-5],[-1,2]]
+            >>> e1 = [1,1]
+            >>> e2 = [1,4]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.dimension()
+            2
+
+        """
+        return self.K().dimension()
 
 
     def _zero(self):
 
 
     def _zero(self):
@@ -360,7 +558,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
         -------
 
         matrix
-            A ``K.dimension()``-by-``1`` column vector of zeros.
+            A ``self.dimension()``-by-``1`` column vector of zeros.
 
         Examples
         --------
 
         Examples
         --------
@@ -378,15 +576,16 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
             <BLANKLINE>
 
         """
-        return matrix(0, (self._K.dimension(), 1), tc='d')
+        return matrix(0, (self.dimension(), 1), tc='d')
 
 
 
 
-    def _A(self):
-        """
+    def A(self):
+        r"""
         Return the matrix ``A`` used in our CVXOPT construction.
 
         Return the matrix ``A`` used in our CVXOPT construction.
 
-        This matrix ``A``  appears on the right-hand side of ``Ax = b``
-        in the statement of the CVXOPT conelp program.
+        This matrix :math:`A` appears on the right-hand side of
+        :math:`Ax = b` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
 
         .. warning::
 
@@ -397,8 +596,8 @@ class SymmetricLinearGame:
         -------
 
         matrix
         -------
 
         matrix
-            A ``1``-by-``(1 + K.dimension())`` row vector. Its first
-            entry is zero, and the rest are the entries of ``e2``.
+            A ``1``-by-``(1 + self.dimension())`` row vector. Its first
+            entry is zero, and the rest are the entries of :meth:`e2`.
 
         Examples
         --------
 
         Examples
         --------
@@ -409,21 +608,22 @@ class SymmetricLinearGame:
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._A())
+            >>> print(SLG.A())
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
         """
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
         """
-        return matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
+        return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
 
 
 
 
 
 
-    def _G(self):
+    def G(self):
         r"""
         Return the matrix ``G`` used in our CVXOPT construction.
 
         r"""
         Return the matrix ``G`` used in our CVXOPT construction.
 
-        Thus matrix ``G``that appears on the left-hand side of ``Gx + s = h``
-        in the statement of the CVXOPT conelp program.
+        Thus matrix :math:`G` appears on the left-hand side of :math:`Gx
+        + s = h` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
 
         .. warning::
 
@@ -434,7 +634,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
         -------
 
         matrix
-            A ``2*K.dimension()``-by-``1 + K.dimension()`` matrix.
+            A ``2*self.dimension()``-by-``(1 + self.dimension())`` matrix.
 
         Examples
         --------
 
         Examples
         --------
@@ -445,7 +645,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._G())
+            >>> print(SLG.G())
             [  0.0000000  -1.0000000   0.0000000   0.0000000]
             [  0.0000000   0.0000000  -1.0000000   0.0000000]
             [  0.0000000   0.0000000   0.0000000  -1.0000000]
             [  0.0000000  -1.0000000   0.0000000   0.0000000]
             [  0.0000000   0.0000000  -1.0000000   0.0000000]
             [  0.0000000   0.0000000   0.0000000  -1.0000000]
@@ -455,66 +655,349 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
             <BLANKLINE>
 
         """
-        I = identity(self._K.dimension())
-        return append_row(append_col(self._zero(), -I),
-                          append_col(self._e1, -self._L))
+        identity_matrix = identity(self.dimension())
+        return append_row(append_col(self._zero(), -identity_matrix),
+                          append_col(self.e1(), -self.L()))
 
 
 
 
-    def _try_solution(self, c, h, C, b, tolerance):
-        # Actually solve the thing and obtain a dictionary describing
-        # what happened.
-        try:
-            solvers.options['show_progress'] = options.VERBOSE
-            solvers.options['abs_tol'] = tolerance
-            soln_dict = solvers.conelp(c,self._G(),h,C,self._A(),b)
-        except ValueError as e:
-            if str(e) == 'math domain error':
-                # Oops, CVXOPT tried to take the square root of a
-                # negative number. Report some details about the game
-                # rather than just the underlying CVXOPT crash.
-                raise PoorScalingException(self)
-            else:
-                raise e
+    def c(self):
+        r"""
+        Return the vector ``c`` used in our CVXOPT construction.
 
 
-        # The optimal strategies are named ``p`` and ``q`` in the
-        # background documentation, and we need to extract them from
-        # the CVXOPT ``x`` and ``z`` variables. The objective values
-        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
-        # ``x`` and ``y`` variables; however, they're stored
-        # conveniently as separate entries in the solution dictionary.
-        p1_value = -soln_dict['primal objective']
-        p2_value = -soln_dict['dual objective']
-        p1_optimal = soln_dict['x'][1:]
-        p2_optimal = soln_dict['z'][self._K.dimension():]
+        The column vector :math:`c` appears in the objective function
+        value :math:`\left\langle c,x \right\rangle` in the `statement
+        of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
 
-        # The "status" field contains "optimal" if everything went
-        # according to plan. Other possible values are "primal
-        # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
-        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > tolerance:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A :meth:`dimension`-by-``1`` column vector.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.c())
+            [-1.0000000]
+            [ 0.0000000]
+            [ 0.0000000]
+            [ 0.0000000]
+            <BLANKLINE>
+
+        """
+        return matrix([-1, self._zero()])
+
+
+    def C(self):
+        """
+        Return the cone ``C`` used in our CVXOPT construction.
+
+        This is the cone over which the `CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_
+        takes place.
+
+        Returns
+        -------
+
+        CartesianProduct
+            The cartesian product of ``K`` with itself.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.C())
+            Cartesian product of dimension 6 with 2 factors:
+              * Nonnegative orthant in the real 3-space
+              * Nonnegative orthant in the real 3-space
+
+        """
+        return CartesianProduct(self._K, self._K)
+
+    def h(self):
+        r"""
+        Return the ``h`` vector used in our CVXOPT construction.
+
+        The :math:`h` vector appears on the right-hand side of :math:`Gx
+        + s = h` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``2*self.dimension()``-by-``1`` column vector of zeros.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.h())
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            <BLANKLINE>
+
+        """
+
+        return matrix([self._zero(), self._zero()])
+
+
+    @staticmethod
+    def b():
+        r"""
+        Return the ``b`` vector used in our CVXOPT construction.
+
+        The vector :math:`b` appears on the right-hand side of :math:`Ax
+        = b` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
+
+        This method is static because the dimensions and entries of
+        ``b`` are known beforehand, and don't depend on any other
+        properties of the game.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``1``-by-``1`` matrix containing a single entry ``1``.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.b())
+            [1.0000000]
+            <BLANKLINE>
+
+        """
+        return matrix([1], tc='d')
+
+
+    def player1_start(self):
+        """
+        Return a feasible starting point for player one.
+
+        This starting point is for the CVXOPT formulation and not for
+        the original game. The basic premise is that if you scale
+        :meth:`e2` by the reciprocal of its squared norm, then you get a
+        point in :meth:`K` that makes a unit inner product with
+        :meth:`e2`. We then get to choose the primal objective function
+        value such that the constraint involving :meth:`L` is satisfied.
+
+        Returns
+        -------
+
+        dict
+            A dictionary with two keys, ``'x'`` and ``'s'``, which
+            contain the vectors of the same name in the CVXOPT primal
+            problem formulation.
+
+            The vector ``x`` consists of the primal objective function
+            value concatenated with the strategy (for player one) that
+            achieves it. The vector ``s`` is essentially a dummy
+            variable, and is computed from the equality constraing in
+            the CVXOPT primal problem.
+
+        """
+        p = self.e2() / (norm(self.e2()) ** 2)
+        dist = self.K().ball_radius(self.e1())
+        nu = - self._L_specnorm()/(dist*norm(self.e2()))
+        x = matrix([nu, p], (self.dimension() + 1, 1))
+        s = - self.G()*x
+
+        return {'x': x, 's': s}
+
+
+    def player2_start(self):
+        """
+        Return a feasible starting point for player two.
+
+        This starting point is for the CVXOPT formulation and not for
+        the original game. The basic premise is that if you scale
+        :meth:`e1` by the reciprocal of its squared norm, then you get a
+        point in :meth:`K` that makes a unit inner product with
+        :meth:`e1`. We then get to choose the dual objective function
+        value such that the constraint involving :meth:`L` is satisfied.
+
+        Returns
+        -------
+
+        dict
+            A dictionary with two keys, ``'y'`` and ``'z'``, which
+            contain the vectors of the same name in the CVXOPT dual
+            problem formulation.
+
+            The ``1``-by-``1`` vector ``y`` consists of the dual
+            objective function value. The last :meth:`dimension` entries
+            of the vector ``z`` contain the strategy (for player two)
+            that achieves it. The remaining entries of ``z`` are
+            essentially dummy variables, computed from the equality
+            constraint in the CVXOPT dual problem.
+
+        """
+        q = self.e1() / (norm(self.e1()) ** 2)
+        dist = self.K().ball_radius(self.e2())
+        omega = self._L_specnorm()/(dist*norm(self.e1()))
+        y = matrix([omega])
+        z2 = q
+        z1 = y*self.e2() - self.L().trans()*z2
+        z = matrix([z1, z2], (self.dimension()*2, 1))
+
+        return {'y': y, 'z': z}
+
+
+    def _L_specnorm(self):
+        """
+        Compute the spectral norm of :meth:`L` and cache it.
+
+        The spectral norm of the matrix :meth:`L` is used in a few
+        places. Since it can be expensive to compute, we want to cache
+        its value. That is not possible in :func:`specnorm`, which lies
+        outside of a class, so this is the place to do it.
+
+        Returns
+        -------
+
+        float
+            A nonnegative real number; the largest singular value of
+            the matrix :meth:`L`.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> from dunshire.matrices import specnorm
+            >>> L = [[1,2],[3,4]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> specnorm(SLG.L()) == SLG._L_specnorm()
+            True
+
+        """
+        if self._L_specnorm_value is None:
+            self._L_specnorm_value = specnorm(self.L())
+        return self._L_specnorm_value
+
+
+    def tolerance_scale(self, solution):
+        r"""
+
+        Return a scaling factor that should be applied to
+        :const:`dunshire.options.ABS_TOL` for this game.
+
+        When performing certain comparisons, the default tolerance
+        :const:`dunshire.options.ABS_TOL` may not be appropriate. For
+        example, if we expect ``x`` and ``y`` to be within
+        :const:`dunshire.options.ABS_TOL` of each other, than the inner
+        product of ``L*x`` and ``y`` can be as far apart as the spectral
+        norm of ``L`` times the sum of the norms of ``x`` and
+        ``y``. Such a comparison is made in :meth:`solution`, and in
+        many of our unit tests.
+
+        The returned scaling factor found from the inner product
+        mentioned above is
+
+        .. math::
+
+            \left\lVert L \right\rVert_{2}
+            \left( \left\lVert \bar{x} \right\rVert
+                   + \left\lVert \bar{y} \right\rVert
+            \right),
+
+        where :math:`\bar{x}` and :math:`\bar{y}` are optimal solutions
+        for players one and two respectively. This scaling factor is not
+        formally justified, but attempting anything smaller leads to
+        test failures.
+
+        .. warning::
+
+            Optimal solutions are not unique, so the scaling factor
+            obtained from ``solution`` may not work when comparing other
+            solutions.
+
+        Parameters
+        ----------
+
+        solution : Solution
+            A solution of this game, used to obtain the norms of the
+            optimal strategies.
+
+        Returns
+        -------
+
+        float
+            A scaling factor to be multiplied by
+            :const:`dunshire.options.ABS_TOL` when
+            making comparisons involving solutions of this game.
+
+        Examples
+        --------
+
+        The spectral norm of ``L`` in this case is around ``5.464``, and
+        the optimal strategies both have norm one, so we expect the
+        tolerance scale to be somewhere around ``2 * 5.464``, or
+        ``10.929``::
+
+            >>> from dunshire import *
+            >>> L = [[1,2],[3,4]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> SLG.tolerance_scale(SLG.solution())
+            10.929...
+
+        """
+        norm_p1_opt = norm(solution.player1_optimal())
+        norm_p2_opt = norm(solution.player2_optimal())
+        scale = self._L_specnorm()*(norm_p1_opt + norm_p2_opt)
+
+        # Don't return anything smaller than 1... we can't go below
+        # out "minimum tolerance."
+        return max(1, scale)
 
 
     def solution(self):
 
 
     def solution(self):
@@ -524,7 +1007,7 @@ class SymmetricLinearGame:
         Returns
         -------
 
         Returns
         -------
 
-        :class:`Solution`
+        Solution
             A :class:`Solution` object describing the game's value and
             the optimal strategies of both players.
 
             A :class:`Solution` object describing the game's value and
             the optimal strategies of both players.
 
@@ -551,11 +1034,11 @@ class SymmetricLinearGame:
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: -6.1724138
+            Game value: -6.172...
             Player 1 optimal:
             Player 1 optimal:
-              [ 0.551...]
-              [-0.000...]
-              [ 0.448...]
+              [0.551...]
+              [0.000...]
+              [0.448...]
             Player 2 optimal:
               [0.448...]
               [0.000...]
             Player 2 optimal:
               [0.448...]
               [0.000...]
@@ -571,7 +1054,7 @@ class SymmetricLinearGame:
             >>> e2 = [4,5,6]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
             >>> e2 = [4,5,6]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: 0.0312500
+            Game value: 0.031...
             Player 1 optimal:
               [0.031...]
               [0.062...]
             Player 1 optimal:
               [0.031...]
               [0.062...]
@@ -581,32 +1064,177 @@ class SymmetricLinearGame:
               [0.156...]
               [0.187...]
 
               [0.156...]
               [0.187...]
 
-        """
-        # The cone "C" that appears in the statement of the CVXOPT
-        # conelp program.
-        C = CartesianProduct(self._K, self._K)
+        This is another Gowda/Ravindran example that is supposed to have
+        a negative game value::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> L = [[1, -2], [-2, 1]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1, 1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.solution().game_value() < -ABS_TOL
+            True
+
+        The following two games are problematic numerically, but we
+        should be able to solve them::
+
+            >>> from dunshire import *
+            >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+            ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+            >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 18.767...
+            Player 1 optimal:
+              [0.000...]
+              [9.766...]
+            Player 2 optimal:
+              [1.047...]
+              [0.000...]
 
 
-        # The column vector "b" that appears on the right-hand side of
-        # Ax = b in the statement of the CVXOPT conelp program.
-        b = matrix([1], tc='d')
+        ::
 
 
-        # The column vector "h" that appears on the right-hand side of
-        # Gx + s = h in the statement of the CVXOPT conelp program.
-        h = matrix([self._zero(), self._zero()])
+            >>> from dunshire import *
+            >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+            ...      [1.33147433507846657541, 1.17913616272988108769]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+            >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 24.614...
+            Player 1 optimal:
+              [6.371...]
+              [0.000...]
+            Player 2 optimal:
+              [2.506...]
+              [0.000...]
 
 
-        # The column vector "c" that appears in the objective function
-        # value <c,x> in the statement of the CVXOPT conelp program.
-        c = matrix([-1, self._zero()])
+        This is another one that was difficult numerically, and caused
+        trouble even after we fixed the first two::
 
 
+            >>> from dunshire import *
+            >>> L = [[57.22233908627052301199, 41.70631373437460354126],
+            ...      [83.04512571985074487202, 57.82581810406928468637]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [7.31887017043399268346, 0.89744171905822367474]
+            >>> e2 = [0.11099824781179848388, 6.12564670639315345113]
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> print(SLG.solution())
+            Game value: 70.437...
+            Player 1 optimal:
+              [9.009...]
+              [0.000...]
+            Player 2 optimal:
+              [0.136...]
+              [0.000...]
+
+        And finally, here's one that returns an "optimal" solution, but
+        whose primal/dual objective function values are far apart::
+
+            >>> from dunshire import *
+            >>> L = [[ 6.49260076597376212248, -0.60528030227678542019],
+            ...      [ 2.59896077096751731972, -0.97685530240286766457]]
+            >>> K = IceCream(2)
+            >>> e1 = [1, 0.43749513972645248661]
+            >>> e2 = [1, 0.46008379832200291260]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 11.596...
+            Player 1 optimal:
+              [ 1.852...]
+              [-1.852...]
+            Player 2 optimal:
+              [ 1.777...]
+              [-1.777...]
+
+        """
         try:
         try:
-            # First try with a stricter tolerance. Who knows, it might work.
-            return self._try_solution(c, h, C.cvxopt_dims(), b,
-                                      tolerance = options.ABS_TOL / 10)
+            opts = {'show_progress': False}
+            soln_dict = solvers.conelp(self.c(),
+                                       self.G(),
+                                       self.h(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
+                                       primalstart=self.player1_start(),
+                                       dualstart=self.player2_start(),
+                                       options=opts)
+        except ValueError as error:
+            if str(error) == 'math domain error':
+                # Oops, CVXOPT tried to take the square root of a
+                # negative number. Report some details about the game
+                # rather than just the underlying CVXOPT crash.
+                printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+                raise PoorScalingException(self)
+            else:
+                raise error
 
 
-        except (PoorScalingException, GameUnsolvableException):
-            # Ok, that didn't work. Let's try it with the default.
-            return self._try_solution(c, h, C.cvxopt_dims(), b,
-                                      tolerance = options.ABS_TOL)
+        # The optimal strategies are named ``p`` and ``q`` in the
+        # background documentation, and we need to extract them from
+        # the CVXOPT ``x`` and ``z`` variables. The objective values
+        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
+        # ``x`` and ``y`` variables; however, they're stored
+        # conveniently as separate entries in the solution dictionary.
+        p1_value = -soln_dict['primal objective']
+        p2_value = -soln_dict['dual objective']
+        p1_optimal = soln_dict['x'][1:]
+        p2_optimal = soln_dict['z'][self.dimension():]
+
+        # The "status" field contains "optimal" if everything went
+        # according to plan. Other possible values are "primal
+        # infeasible", "dual infeasible", "unknown", all of which mean
+        # we didn't get a solution.
+        #
+        # The "infeasible" ones are the worst, since they indicate
+        # that CVXOPT is convinced the problem is infeasible (and that
+        # cannot happen).
+        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        soln = Solution(payoff, p1_optimal, p2_optimal)
+
+        # The "optimal" and "unknown" results, we actually treat the
+        # same. Even if CVXOPT bails out due to numerical difficulty,
+        # it will have some candidate points in mind. If those
+        # candidates are good enough, we take them. We do the same
+        # check for "optimal" results.
+        #
+        # First we check that the primal/dual objective values are
+        # close enough because otherwise CVXOPT might return "unknown"
+        # and give us two points in the cone that are nowhere near
+        # optimal. And in fact, we need to ensure that they're close
+        # for "optimal" results, too, because we need to know how
+        # lenient to be in our testing.
+        #
+        if abs(p1_value - p2_value) > self.tolerance_scale(soln)*ABS_TOL:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # And we also check that the points it gave us belong to the
+        # cone, just in case...
+        if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        return soln
 
 
     def condition(self):
 
 
     def condition(self):
@@ -618,8 +1246,12 @@ class SymmetricLinearGame:
         can show up. We define the condition number of this game to be
         the average of the condition numbers of ``G`` and ``A`` in the
         CVXOPT construction. If the condition number of this game is
         can show up. We define the condition number of this game to be
         the average of the condition numbers of ``G`` and ``A`` in the
         CVXOPT construction. If the condition number of this game is
-        high, then you can expect numerical difficulty (such as
-        :class:`PoorScalingException`).
+        high, you can problems like :class:`PoorScalingException`.
+
+        Random testing shows that a condition number of around ``125``
+        is about the best that we can solve reliably. However, the
+        failures are intermittent, and you may get lucky with an
+        ill-conditioned game.
 
         Returns
         -------
 
         Returns
         -------
@@ -637,13 +1269,11 @@ class SymmetricLinearGame:
         >>> e1 = [1]
         >>> e2 = e1
         >>> SLG = SymmetricLinearGame(L, K, e1, e2)
         >>> e1 = [1]
         >>> e2 = e1
         >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> actual = SLG.condition()
-        >>> expected = 1.8090169943749477
-        >>> abs(actual - expected) < options.ABS_TOL
-        True
+        >>> SLG.condition()
+        1.809...
 
         """
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self.G()) + condition_number(self.A()))/2
 
 
     def dual(self):
 
 
     def dual(self):
@@ -675,14 +1305,13 @@ class SymmetricLinearGame:
                    [ 3],
               e2 = [ 1]
                    [ 1]
                    [ 3],
               e2 = [ 1]
                    [ 1]
-                   [ 1],
-              Condition((L, K, e1, e2)) = 44.476...
+                   [ 1]
 
         """
 
         """
-        # We pass ``self._L`` right back into the constructor, because
+        # We pass ``self.L()`` right back into the constructor, because
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
-        return SymmetricLinearGame(self._L,
-                                   self._K,
-                                   self._e2,
-                                   self._e1)
+        return SymmetricLinearGame(self.L(),
+                                   self.K(),
+                                   self.e2(),
+                                   self.e1())