]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
A bunch more doc fixes.
[dunshire.git] / dunshire / games.py
index 13c84f88b55824ca1f75630645f732a0e60f74a6..ea7a64f6b8e6451a808b464494c11e9be9f0de78 100644 (file)
@@ -4,14 +4,15 @@ Symmetric linear games and their solutions.
 This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
-
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
-from .matrices import append_col, append_row, condition_number, identity
-from . import options
+from .matrices import (append_col, append_row, condition_number, identity,
+                       inner_product, norm, specnorm)
+from .options import ABS_TOL, FLOAT_FORMAT, DEBUG_FLOAT_FORMAT
+
+printing.options['dformat'] = FLOAT_FORMAT
 
-printing.options['dformat'] = options.FLOAT_FORMAT
 
 class Solution:
     """
@@ -22,7 +23,7 @@ class Solution:
     --------
 
         >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
-        Game value: 10.0000000
+        Game value: 10.000...
         Player 1 optimal:
           [ 1]
           [ 2]
@@ -178,11 +179,15 @@ class SymmetricLinearGame:
     ----------
 
     L : list of list of float
-        A matrix represented as a list of ROWS. This representation
-        agrees with (for example) SageMath and NumPy, but not with CVXOPT
-        (whose matrix constructor accepts a list of columns).
-
-    K : :class:`SymmetricCone`
+        A matrix represented as a list of **rows**. This representation
+        agrees with (for example) `SageMath <http://www.sagemath.org/>`_
+        and `NumPy <http://www.numpy.org/>`_, but not with CVXOPT (whose
+        matrix constructor accepts a list of columns). In reality, ``L``
+        can be any iterable type of the correct length; however, you
+        should be extremely wary of the way we interpret anything other
+        than a list of rows.
+
+    K : dunshire.cones.SymmetricCone
         The symmetric cone instance over which the game is played.
 
     e1 : iterable float
@@ -219,8 +224,7 @@ class SymmetricLinearGame:
                [ 1],
           e2 = [ 1]
                [ 2]
-               [ 3],
-          Condition((L, K, e1, e2)) = 31.834...
+               [ 3]
 
     Lists can (and probably should) be used for every argument::
 
@@ -238,8 +242,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 1.707...
+               [ 1]
 
     The points ``e1`` and ``e2`` can also be passed as some other
     enumerable type (of the correct length) without much harm, since
@@ -261,8 +264,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 1.707...
+               [ 1]
 
     However, ``L`` will always be intepreted as a list of rows, even
     if it is passed as a :class:`cvxopt.base.matrix` which is
@@ -283,8 +285,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 6.073...
+               [ 1]
         >>> L = cvxopt.matrix(L)
         >>> print(L)
         [ 1  3]
@@ -299,8 +300,7 @@ class SymmetricLinearGame:
           e1 = [ 1]
                [ 1],
           e2 = [ 1]
-               [ 1],
-          Condition((L, K, e1, e2)) = 6.073...
+               [ 1]
 
     """
     def __init__(self, L, K, e1, e2):
@@ -322,6 +322,8 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
+        # Initial value of cached method.
+        self._L_specnorm_value = None
 
 
     def __str__(self):
@@ -332,17 +334,213 @@ class SymmetricLinearGame:
               '  L = {:s},\n' \
               '  K = {!s},\n' \
               '  e1 = {:s},\n' \
-              '  e2 = {:s},\n' \
-              '  Condition((L, K, e1, e2)) = {:f}.'
-        indented_L = '\n      '.join(str(self._L).splitlines())
-        indented_e1 = '\n       '.join(str(self._e1).splitlines())
-        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+              '  e2 = {:s}'
+        indented_L = '\n      '.join(str(self.L()).splitlines())
+        indented_e1 = '\n       '.join(str(self.e1()).splitlines())
+        indented_e2 = '\n       '.join(str(self.e2()).splitlines())
 
         return tpl.format(indented_L,
-                          str(self._K),
+                          str(self.K()),
                           indented_e1,
-                          indented_e2,
-                          self.condition())
+                          indented_e2)
+
+
+    def L(self):
+        """
+        Return the matrix ``L`` passed to the constructor.
+
+        Returns
+        -------
+
+        matrix
+            The matrix that defines this game's :meth:`payoff` operator.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.L())
+            [  1  -5 -15]
+            [ -1   2  -3]
+            [-12 -15   1]
+            <BLANKLINE>
+
+        """
+        return self._L
+
+
+    def K(self):
+        """
+        Return the cone over which this game is played.
+
+        Returns
+        -------
+
+        SymmetricCone
+            The :class:`SymmetricCone` over which this game is played.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.K())
+            Nonnegative orthant in the real 3-space
+
+        """
+        return self._K
+
+
+    def e1(self):
+        """
+        Return player one's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e1())
+            [ 1]
+            [ 1]
+            [ 1]
+            <BLANKLINE>
+
+        """
+        return self._e1
+
+
+    def e2(self):
+        """
+        Return player two's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e2())
+            [ 1]
+            [ 2]
+            [ 3]
+            <BLANKLINE>
+
+        """
+        return self._e2
+
+
+    def payoff(self, strategy1, strategy2):
+        r"""
+        Return the payoff associated with ``strategy1`` and ``strategy2``.
+
+        The payoff operator takes pairs of strategies to a real
+        number. For example, if player one's strategy is :math:`x` and
+        player two's strategy is :math:`y`, then the associated payoff
+        is :math:`\left\langle L\left(x\right),y \right\rangle \in
+        \mathbb{R}`. Here, :math:`L` denotes the same linear operator as
+        :meth:`L`. This method computes the payoff given the two
+        players' strategies.
+
+        Parameters
+        ----------
+
+        strategy1 : matrix
+            Player one's strategy.
+
+        strategy2 : matrix
+            Player two's strategy.
+
+        Returns
+        -------
+
+        float
+            The payoff for the game when player one plays ``strategy1``
+            and player two plays ``strategy2``.
+
+        Examples
+        --------
+
+        The value of the game should be the payoff at the optimal
+        strategies::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> soln = SLG.solution()
+            >>> x_bar = soln.player1_optimal()
+            >>> y_bar = soln.player2_optimal()
+            >>> SLG.payoff(x_bar, y_bar) == soln.game_value()
+            True
+
+        """
+        return inner_product(self.L()*strategy1, strategy2)
+
+
+    def dimension(self):
+        """
+        Return the dimension of this game.
+
+        The dimension of a game is not needed for the theory, but it is
+        useful for the implementation. We define the dimension of a game
+        to be the dimension of its underlying cone. Or what is the same,
+        the dimension of the space from which the strategies are chosen.
+
+        Returns
+        -------
+
+        int
+            The dimension of the cone :meth:`K`, or of the space where
+            this game is played.
+
+        Examples
+        --------
+
+        The dimension of a game over the nonnegative quadrant in the
+        plane should be two (the dimension of the plane)::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,-5],[-1,2]]
+            >>> e1 = [1,1]
+            >>> e2 = [1,4]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.dimension()
+            2
+
+        """
+        return self.K().dimension()
 
 
     def _zero(self):
@@ -360,7 +558,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``K.dimension()``-by-``1`` column vector of zeros.
+            A ``self.dimension()``-by-``1`` column vector of zeros.
 
         Examples
         --------
@@ -378,15 +576,16 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
-        return matrix(0, (self._K.dimension(), 1), tc='d')
+        return matrix(0, (self.dimension(), 1), tc='d')
 
 
-    def _A(self):
-        """
+    def A(self):
+        r"""
         Return the matrix ``A`` used in our CVXOPT construction.
 
-        This matrix ``A``  appears on the right-hand side of ``Ax = b``
-        in the statement of the CVXOPT conelp program.
+        This matrix :math:`A` appears on the right-hand side of
+        :math:`Ax = b` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
@@ -397,8 +596,8 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``1``-by-``(1 + K.dimension())`` row vector. Its first
-            entry is zero, and the rest are the entries of ``e2``.
+            A ``1``-by-``(1 + self.dimension())`` row vector. Its first
+            entry is zero, and the rest are the entries of :meth:`e2`.
 
         Examples
         --------
@@ -409,21 +608,22 @@ class SymmetricLinearGame:
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._A())
+            >>> print(SLG.A())
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
         """
-        return matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
+        return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
 
 
 
-    def _G(self):
+    def G(self):
         r"""
         Return the matrix ``G`` used in our CVXOPT construction.
 
-        Thus matrix ``G`` appears on the left-hand side of ``Gx + s = h``
-        in the statement of the CVXOPT conelp program.
+        Thus matrix :math:`G` appears on the left-hand side of :math:`Gx
+        + s = h` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
@@ -434,7 +634,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``2*K.dimension()``-by-``1 + K.dimension()`` matrix.
+            A ``2*self.dimension()``-by-``(1 + self.dimension())`` matrix.
 
         Examples
         --------
@@ -445,7 +645,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._G())
+            >>> print(SLG.G())
             [  0.0000000  -1.0000000   0.0000000   0.0000000]
             [  0.0000000   0.0000000  -1.0000000   0.0000000]
             [  0.0000000   0.0000000   0.0000000  -1.0000000]
@@ -455,17 +655,19 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
-        I = identity(self._K.dimension())
-        return append_row(append_col(self._zero(), -I),
-                          append_col(self._e1, -self._L))
+        identity_matrix = identity(self.dimension())
+        return append_row(append_col(self._zero(), -identity_matrix),
+                          append_col(self.e1(), -self.L()))
 
 
-    def _c(self):
-        """
+    def c(self):
+        r"""
         Return the vector ``c`` used in our CVXOPT construction.
 
-        The column vector ``c``  appears in the objective function
-        value ``<c,x>`` in the statement of the CVXOPT conelp program.
+        The column vector :math:`c` appears in the objective function
+        value :math:`\left\langle c,x \right\rangle` in the `statement
+        of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
@@ -476,7 +678,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``K.dimension()``-by-``1`` column vector.
+            A :meth:`dimension`-by-``1`` column vector.
 
         Examples
         --------
@@ -487,7 +689,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._c())
+            >>> print(SLG.c())
             [-1.0000000]
             [ 0.0000000]
             [ 0.0000000]
@@ -498,12 +700,13 @@ class SymmetricLinearGame:
         return matrix([-1, self._zero()])
 
 
-    def _C(self):
+    def C(self):
         """
         Return the cone ``C`` used in our CVXOPT construction.
 
-        The cone ``C`` is the cone over which the conelp program takes
-        place.
+        This is the cone over which the `CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_
+        takes place.
 
         Returns
         -------
@@ -520,7 +723,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._C())
+            >>> print(SLG.C())
             Cartesian product of dimension 6 with 2 factors:
               * Nonnegative orthant in the real 3-space
               * Nonnegative orthant in the real 3-space
@@ -528,12 +731,13 @@ class SymmetricLinearGame:
         """
         return CartesianProduct(self._K, self._K)
 
-    def _h(self):
-        """
+    def h(self):
+        r"""
         Return the ``h`` vector used in our CVXOPT construction.
 
-        The ``h`` vector appears on the right-hand side of :math:`Gx + s
-        = h` in the statement of the CVXOPT conelp program.
+        The :math:`h` vector appears on the right-hand side of :math:`Gx
+        + s = h` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
 
         .. warning::
 
@@ -544,7 +748,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``2*K.dimension()``-by-``1`` column vector of zeros.
+            A ``2*self.dimension()``-by-``1`` column vector of zeros.
 
         Examples
         --------
@@ -555,7 +759,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._h())
+            >>> print(SLG.h())
             [0.0000000]
             [0.0000000]
             [0.0000000]
@@ -568,12 +772,19 @@ class SymmetricLinearGame:
 
         return matrix([self._zero(), self._zero()])
 
-    def _b(self):
-        """
+
+    @staticmethod
+    def b():
+        r"""
         Return the ``b`` vector used in our CVXOPT construction.
 
-        The vector ``b`` appears on the right-hand side of :math:`Ax =
-        b` in the statement of the CVXOPT conelp program.
+        The vector :math:`b` appears on the right-hand side of :math:`Ax
+        = b` in the `statement of the CVXOPT conelp program
+        <http://cvxopt.org/userguide/coneprog.html#linear-cone-programs>`_.
+
+        This method is static because the dimensions and entries of
+        ``b`` are known beforehand, and don't depend on any other
+        properties of the game.
 
         .. warning::
 
@@ -595,7 +806,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._b())
+            >>> print(SLG.b())
             [1.0000000]
             <BLANKLINE>
 
@@ -603,128 +814,190 @@ class SymmetricLinearGame:
         return matrix([1], tc='d')
 
 
-    def _try_solution(self, tolerance):
+    def player1_start(self):
         """
-        Solve this linear game within ``tolerance``, if possible.
+        Return a feasible starting point for player one.
 
-        This private function is the one that does all of the actual
-        work for :meth:`solution`. This method accepts a ``tolerance``,
-        and what :meth:`solution` does is call this method twice with
-        two different tolerances. First it tries a strict tolerance, and
-        then it tries a looser one.
+        This starting point is for the CVXOPT formulation and not for
+        the original game. The basic premise is that if you scale
+        :meth:`e2` by the reciprocal of its squared norm, then you get a
+        point in :meth:`K` that makes a unit inner product with
+        :meth:`e2`. We then get to choose the primal objective function
+        value such that the constraint involving :meth:`L` is satisfied.
 
-        .. warning::
+        Returns
+        -------
 
-            If you try to be smart and precompute the matrices used by
-            this function (the ones passed to ``conelp``), then you're
-            going to shoot yourself in the foot. CVXOPT can and will
-            clobber some (but not all) of its input matrices. This isn't
-            performance sensitive, so play it safe.
+        dict
+            A dictionary with two keys, ``'x'`` and ``'s'``, which
+            contain the vectors of the same name in the CVXOPT primal
+            problem formulation.
+
+            The vector ``x`` consists of the primal objective function
+            value concatenated with the strategy (for player one) that
+            achieves it. The vector ``s`` is essentially a dummy
+            variable, and is computed from the equality constraing in
+            the CVXOPT primal problem.
+
+        """
+        p = self.e2() / (norm(self.e2()) ** 2)
+        dist = self.K().ball_radius(self.e1())
+        nu = - self._L_specnorm()/(dist*norm(self.e2()))
+        x = matrix([nu, p], (self.dimension() + 1, 1))
+        s = - self.G()*x
+
+        return {'x': x, 's': s}
 
-        Parameters
-        ----------
 
-        tolerance : float
-            The absolute tolerance to pass to the CVXOPT solver.
+    def player2_start(self):
+        """
+        Return a feasible starting point for player two.
+
+        This starting point is for the CVXOPT formulation and not for
+        the original game. The basic premise is that if you scale
+        :meth:`e1` by the reciprocal of its squared norm, then you get a
+        point in :meth:`K` that makes a unit inner product with
+        :meth:`e1`. We then get to choose the dual objective function
+        value such that the constraint involving :meth:`L` is satisfied.
 
         Returns
         -------
 
-        :class:`Solution`
-            A :class:`Solution` object describing the game's value and
-            the optimal strategies of both players.
+        dict
+            A dictionary with two keys, ``'y'`` and ``'z'``, which
+            contain the vectors of the same name in the CVXOPT dual
+            problem formulation.
 
-        Raises
-        ------
-        GameUnsolvableException
-            If the game could not be solved (if an optimal solution to its
-            associated cone program was not found).
+            The ``1``-by-``1`` vector ``y`` consists of the dual
+            objective function value. The last :meth:`dimension` entries
+            of the vector ``z`` contain the strategy (for player two)
+            that achieves it. The remaining entries of ``z`` are
+            essentially dummy variables, computed from the equality
+            constraint in the CVXOPT dual problem.
+
+        """
+        q = self.e1() / (norm(self.e1()) ** 2)
+        dist = self.K().ball_radius(self.e2())
+        omega = self._L_specnorm()/(dist*norm(self.e1()))
+        y = matrix([omega])
+        z2 = q
+        z1 = y*self.e2() - self.L().trans()*z2
+        z = matrix([z1, z2], (self.dimension()*2, 1))
+
+        return {'y': y, 'z': z}
 
-        PoorScalingException
-            If the game could not be solved because CVXOPT crashed while
-            trying to take the square root of a negative number.
+
+    def _L_specnorm(self):
+        """
+        Compute the spectral norm of :meth:`L` and cache it.
+
+        The spectral norm of the matrix :meth:`L` is used in a few
+        places. Since it can be expensive to compute, we want to cache
+        its value. That is not possible in :func:`specnorm`, which lies
+        outside of a class, so this is the place to do it.
+
+        Returns
+        -------
+
+        float
+            A nonnegative real number; the largest singular value of
+            the matrix :meth:`L`.
 
         Examples
         --------
 
-        This game can be solved easily, so the first attempt in
-        :meth:`solution` should succeed::
-
             >>> from dunshire import *
-            >>> from dunshire.matrices import norm
-            >>> from dunshire.options import ABS_TOL
-            >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
-            >>> e1 = [1,1,1]
-            >>> e2 = [1,1,1]
-            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> s1 = SLG.solution()
-            >>> s2 = SLG._try_solution(options.ABS_TOL)
-            >>> abs(s1.game_value() - s2.game_value()) < ABS_TOL
-            True
-            >>> norm(s1.player1_optimal() - s2.player1_optimal()) < ABS_TOL
-            True
-            >>> norm(s1.player2_optimal() - s2.player2_optimal()) < ABS_TOL
+            >>> from dunshire.matrices import specnorm
+            >>> L = [[1,2],[3,4]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> specnorm(SLG.L()) == SLG._L_specnorm()
             True
 
         """
-        try:
-            solvers.options['show_progress'] = options.VERBOSE
-            solvers.options['abs_tol'] = tolerance
-            soln_dict = solvers.conelp(self._c(),
-                                       self._G(),
-                                       self._h(),
-                                       self._C().cvxopt_dims(),
-                                       self._A(),
-                                       self._b())
-        except ValueError as e:
-            if str(e) == 'math domain error':
-                # Oops, CVXOPT tried to take the square root of a
-                # negative number. Report some details about the game
-                # rather than just the underlying CVXOPT crash.
-                raise PoorScalingException(self)
-            else:
-                raise e
+        if self._L_specnorm_value is None:
+            self._L_specnorm_value = specnorm(self.L())
+        return self._L_specnorm_value
 
-        # The optimal strategies are named ``p`` and ``q`` in the
-        # background documentation, and we need to extract them from
-        # the CVXOPT ``x`` and ``z`` variables. The objective values
-        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
-        # ``x`` and ``y`` variables; however, they're stored
-        # conveniently as separate entries in the solution dictionary.
-        p1_value = -soln_dict['primal objective']
-        p2_value = -soln_dict['dual objective']
-        p1_optimal = soln_dict['x'][1:]
-        p2_optimal = soln_dict['z'][self._K.dimension():]
 
-        # The "status" field contains "optimal" if everything went
-        # according to plan. Other possible values are "primal
-        # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
-        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > tolerance:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
+    def tolerance_scale(self, solution):
+        r"""
+
+        Return a scaling factor that should be applied to
+        :const:`dunshire.options.ABS_TOL` for this game.
+
+        When performing certain comparisons, the default tolerance
+        :const:`dunshire.options.ABS_TOL` may not be appropriate. For
+        example, if we expect ``x`` and ``y`` to be within
+        :const:`dunshire.options.ABS_TOL` of each other, than the inner
+        product of ``L*x`` and ``y`` can be as far apart as the spectral
+        norm of ``L`` times the sum of the norms of ``x`` and
+        ``y``. Such a comparison is made in :meth:`solution`, and in
+        many of our unit tests.
+
+        The returned scaling factor found from the inner product
+        mentioned above is
+
+        .. math::
+
+            \left\lVert L \right\rVert_{2}
+            \left( \left\lVert \bar{x} \right\rVert
+                   + \left\lVert \bar{y} \right\rVert
+            \right),
+
+        where :math:`\bar{x}` and :math:`\bar{y}` are optimal solutions
+        for players one and two respectively. This scaling factor is not
+        formally justified, but attempting anything smaller leads to
+        test failures.
+
+        .. warning::
+
+            Optimal solutions are not unique, so the scaling factor
+            obtained from ``solution`` may not work when comparing other
+            solutions.
+
+        Parameters
+        ----------
+
+        solution : Solution
+            A solution of this game, used to obtain the norms of the
+            optimal strategies.
+
+        Returns
+        -------
+
+        float
+            A scaling factor to be multiplied by
+            :const:`dunshire.options.ABS_TOL` when
+            making comparisons involving solutions of this game.
+
+        Examples
+        --------
+
+        The spectral norm of ``L`` in this case is around ``5.464``, and
+        the optimal strategies both have norm one, so we expect the
+        tolerance scale to be somewhere around ``2 * 5.464``, or
+        ``10.929``::
+
+            >>> from dunshire import *
+            >>> L = [[1,2],[3,4]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> SLG.tolerance_scale(SLG.solution())
+            10.929...
+
+        """
+        norm_p1_opt = norm(solution.player1_optimal())
+        norm_p2_opt = norm(solution.player2_optimal())
+        scale = self._L_specnorm()*(norm_p1_opt + norm_p2_opt)
+
+        # Don't return anything smaller than 1... we can't go below
+        # out "minimum tolerance."
+        return max(1, scale)
 
 
     def solution(self):
@@ -734,7 +1007,7 @@ class SymmetricLinearGame:
         Returns
         -------
 
-        :class:`Solution`
+        Solution
             A :class:`Solution` object describing the game's value and
             the optimal strategies of both players.
 
@@ -761,11 +1034,11 @@ class SymmetricLinearGame:
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: -6.1724138
+            Game value: -6.172...
             Player 1 optimal:
-              [ 0.551...]
-              [-0.000...]
-              [ 0.448...]
+              [0.551...]
+              [0.000...]
+              [0.448...]
             Player 2 optimal:
               [0.448...]
               [0.000...]
@@ -781,7 +1054,7 @@ class SymmetricLinearGame:
             >>> e2 = [4,5,6]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: 0.0312500
+            Game value: 0.031...
             Player 1 optimal:
               [0.031...]
               [0.062...]
@@ -791,16 +1064,177 @@ class SymmetricLinearGame:
               [0.156...]
               [0.187...]
 
+        This is another Gowda/Ravindran example that is supposed to have
+        a negative game value::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> L = [[1, -2], [-2, 1]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1, 1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.solution().game_value() < -ABS_TOL
+            True
+
+        The following two games are problematic numerically, but we
+        should be able to solve them::
+
+            >>> from dunshire import *
+            >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+            ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+            >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 18.767...
+            Player 1 optimal:
+              [0.000...]
+              [9.766...]
+            Player 2 optimal:
+              [1.047...]
+              [0.000...]
+
+        ::
+
+            >>> from dunshire import *
+            >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+            ...      [1.33147433507846657541, 1.17913616272988108769]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+            >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 24.614...
+            Player 1 optimal:
+              [6.371...]
+              [0.000...]
+            Player 2 optimal:
+              [2.506...]
+              [0.000...]
+
+        This is another one that was difficult numerically, and caused
+        trouble even after we fixed the first two::
+
+            >>> from dunshire import *
+            >>> L = [[57.22233908627052301199, 41.70631373437460354126],
+            ...      [83.04512571985074487202, 57.82581810406928468637]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [7.31887017043399268346, 0.89744171905822367474]
+            >>> e2 = [0.11099824781179848388, 6.12564670639315345113]
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> print(SLG.solution())
+            Game value: 70.437...
+            Player 1 optimal:
+              [9.009...]
+              [0.000...]
+            Player 2 optimal:
+              [0.136...]
+              [0.000...]
+
+        And finally, here's one that returns an "optimal" solution, but
+        whose primal/dual objective function values are far apart::
+
+            >>> from dunshire import *
+            >>> L = [[ 6.49260076597376212248, -0.60528030227678542019],
+            ...      [ 2.59896077096751731972, -0.97685530240286766457]]
+            >>> K = IceCream(2)
+            >>> e1 = [1, 0.43749513972645248661]
+            >>> e2 = [1, 0.46008379832200291260]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 11.596...
+            Player 1 optimal:
+              [ 1.852...]
+              [-1.852...]
+            Player 2 optimal:
+              [ 1.777...]
+              [-1.777...]
+
         """
         try:
-            # First try with a stricter tolerance. Who knows, it might
-            # work. If it does, we prefer that solution.
-            return self._try_solution(options.ABS_TOL / 10)
+            opts = {'show_progress': False}
+            soln_dict = solvers.conelp(self.c(),
+                                       self.G(),
+                                       self.h(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
+                                       primalstart=self.player1_start(),
+                                       dualstart=self.player2_start(),
+                                       options=opts)
+        except ValueError as error:
+            if str(error) == 'math domain error':
+                # Oops, CVXOPT tried to take the square root of a
+                # negative number. Report some details about the game
+                # rather than just the underlying CVXOPT crash.
+                printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+                raise PoorScalingException(self)
+            else:
+                raise error
 
-        except (PoorScalingException, GameUnsolvableException):
-            # Ok, that didn't work. Let's try it with the default
-            # tolerance, and whatever happens, happens.
-            return self._try_solution(tolerance = options.ABS_TOL)
+        # The optimal strategies are named ``p`` and ``q`` in the
+        # background documentation, and we need to extract them from
+        # the CVXOPT ``x`` and ``z`` variables. The objective values
+        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
+        # ``x`` and ``y`` variables; however, they're stored
+        # conveniently as separate entries in the solution dictionary.
+        p1_value = -soln_dict['primal objective']
+        p2_value = -soln_dict['dual objective']
+        p1_optimal = soln_dict['x'][1:]
+        p2_optimal = soln_dict['z'][self.dimension():]
+
+        # The "status" field contains "optimal" if everything went
+        # according to plan. Other possible values are "primal
+        # infeasible", "dual infeasible", "unknown", all of which mean
+        # we didn't get a solution.
+        #
+        # The "infeasible" ones are the worst, since they indicate
+        # that CVXOPT is convinced the problem is infeasible (and that
+        # cannot happen).
+        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        soln = Solution(payoff, p1_optimal, p2_optimal)
+
+        # The "optimal" and "unknown" results, we actually treat the
+        # same. Even if CVXOPT bails out due to numerical difficulty,
+        # it will have some candidate points in mind. If those
+        # candidates are good enough, we take them. We do the same
+        # check for "optimal" results.
+        #
+        # First we check that the primal/dual objective values are
+        # close enough because otherwise CVXOPT might return "unknown"
+        # and give us two points in the cone that are nowhere near
+        # optimal. And in fact, we need to ensure that they're close
+        # for "optimal" results, too, because we need to know how
+        # lenient to be in our testing.
+        #
+        if abs(p1_value - p2_value) > self.tolerance_scale(soln)*ABS_TOL:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # And we also check that the points it gave us belong to the
+        # cone, just in case...
+        if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        return soln
 
 
     def condition(self):
@@ -812,8 +1246,12 @@ class SymmetricLinearGame:
         can show up. We define the condition number of this game to be
         the average of the condition numbers of ``G`` and ``A`` in the
         CVXOPT construction. If the condition number of this game is
-        high, then you can expect numerical difficulty (such as
-        :class:`PoorScalingException`).
+        high, you can problems like :class:`PoorScalingException`.
+
+        Random testing shows that a condition number of around ``125``
+        is about the best that we can solve reliably. However, the
+        failures are intermittent, and you may get lucky with an
+        ill-conditioned game.
 
         Returns
         -------
@@ -831,13 +1269,11 @@ class SymmetricLinearGame:
         >>> e1 = [1]
         >>> e2 = e1
         >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> actual = SLG.condition()
-        >>> expected = 1.8090169943749477
-        >>> abs(actual - expected) < options.ABS_TOL
-        True
+        >>> SLG.condition()
+        1.809...
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self.G()) + condition_number(self.A()))/2
 
 
     def dual(self):
@@ -869,14 +1305,13 @@ class SymmetricLinearGame:
                    [ 3],
               e2 = [ 1]
                    [ 1]
-                   [ 1],
-              Condition((L, K, e1, e2)) = 44.476...
+                   [ 1]
 
         """
-        # We pass ``self._L`` right back into the constructor, because
+        # We pass ``self.L()`` right back into the constructor, because
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
-        return SymmetricLinearGame(self._L,
-                                   self._K,
-                                   self._e2,
-                                   self._e1)
+        return SymmetricLinearGame(self.L(),
+                                   self.K(),
+                                   self.e2(),
+                                   self.e1())