From daa8ca73cd506b68668cad9e78516fbb7c779954 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sun, 24 Nov 2024 11:03:54 -0500 Subject: [PATCH] {examples,mjo-linear_algebra}.tex: add \Isom for isometries --- examples.tex | 7 +++++-- mjo-linear_algebra.tex | 29 +++++++++++++++++++++++++++++ 2 files changed, 34 insertions(+), 2 deletions(-) diff --git a/examples.tex b/examples.tex index 9096b70..accec5d 100644 --- a/examples.tex +++ b/examples.tex @@ -254,8 +254,11 @@ \end{align*} \normalsize - If $V$ is an algebra, then $\Der{V}$ is the space of all - (linear) derivations on $V$. + If $V$ is an algebra, then $\Der{V}$ is the space of all (linear) + derivations on $V$. We also have the group of isometries on $V$, + if $V$ has a metric: $\Isom{V}$. More generally, if $V$ and $W$ + are both metric spaces, then we can represent the isometries from + one to the other by $\Isom[W]{V}$. \end{section} \begin{section}{Listing} diff --git a/mjo-linear_algebra.tex b/mjo-linear_algebra.tex index 062121f..32d4d6c 100644 --- a/mjo-linear_algebra.tex +++ b/mjo-linear_algebra.tex @@ -196,4 +196,33 @@ } \fi + +% The set of all isometries from its first argument to its second +% (optional) argument, both assumed to be at least normed spaces, and +% more likely Hilbert spaces. The norms are implicit, i.e. not +% included in the arguments. If the optional argument is omitted, you +% get the isometries from the first argument to itself AKA its +% isometry group. +\newcommand*{\Isom}[2][]{ + \operatorname{Isom}\of{ {#2} + \if\relax\detokenize{#1}\relax + {}% + \else + {,{#1}}% + \fi + } +} +\ifdefined\newglossaryentry + \newglossaryentry{Isom}{ + name={\ensuremath{\Isom{V}}}, + description={the group of isometries on $V$}, + sort=Isom + } + \newglossaryentry{Isom2}{ + name={\ensuremath{\Isom[W]{V}}}, + description={the set of isometries from $V$ to $W$}, + sort=Isom + } +\fi + \fi -- 2.44.2