From f82e8e51ac99547bab1a02d678a1476971f17444 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Tue, 10 Dec 2019 15:28:47 -0500 Subject: [PATCH] Add \unit{} for the multiplicative identity element. Technically we could pass off \identity{X} as the multiplicative identity element in an algebraic structure, by using the "arrow" interpretation in the right category. But let's not try to shoot ourselves in the foot too hard, yeah? --- examples.tex | 3 +++ mjo-algebra.tex | 12 ++++++++++++ mjo-arrow.tex | 10 +++++++++- 3 files changed, 24 insertions(+), 1 deletion(-) diff --git a/examples.tex b/examples.tex index 131a213..65e0c80 100644 --- a/examples.tex +++ b/examples.tex @@ -36,6 +36,9 @@ $\mathcal{A}$ and if $x,y,z \in \mathcal{A}$, then $\alg{\set{x,y,z}}$ is the smallest subalgebra of $\mathcal{A}$ containing the set $\set{x,y,z}$. + + If $R$ has a multiplicative identity (that is, a unit) element, + then that element is denoted by $\unit{R}$. \end{section} \begin{section}{Algorithm} diff --git a/mjo-algebra.tex b/mjo-algebra.tex index 7ff7b5a..36ad4bd 100644 --- a/mjo-algebra.tex +++ b/mjo-algebra.tex @@ -12,6 +12,18 @@ \input{mjo-common} % for \of, and \binopmany +% The multiplicative identity element of its argument, which should be +% an algebraic structure. +\newcommand*{\unit}[1]{ 1_{{#1}} } + +\ifdefined\newglossaryentry + \newglossaryentry{unit}{ + name={\ensuremath{\unit{R}}}, + description={the multiplicative identity (unit) element of $R$}, + sort=u + } +\fi + % The direct sum of two things. \newcommand*{\directsum}[2]{ {#1}\oplus{#2} } diff --git a/mjo-arrow.tex b/mjo-arrow.tex index 9bf9dc5..2d5095e 100644 --- a/mjo-arrow.tex +++ b/mjo-arrow.tex @@ -23,9 +23,17 @@ } \fi -% The identity operator/arrow on its argument. +% The identity function/arrow on its argument. \newcommand*{\identity}[1]{ \operatorname{id}_{{#1}} } +\ifdefined\newglossaryentry + \newglossaryentry{identity}{ + name={\ensuremath{\identity{X}}}, + description={the identity function or arrow on $X$}, + sort=i + } +\fi + % The composition of two arrows/functions. For example, the % composition of g with f is \compose{g}{f}\of{x} === g\of{f\of{x}}. \newcommand*{\compose}[2]{ {#1}\circ{#2} } -- 2.44.2