From f6e1d203ea962a391bcb71ffbf8dd380f09fa833 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 26 Oct 2012 14:22:56 -0400 Subject: [PATCH] Make the divided_difference() function rely on divided_difference_coefficients(). Make divided_difference() and newton_polynomial() take a list of function values instead of the function itself. --- mjo/interpolation.py | 67 +++++++++++++++++++++----------------------- 1 file changed, 32 insertions(+), 35 deletions(-) diff --git a/mjo/interpolation.py b/mjo/interpolation.py index d5011ea..1d594c3 100644 --- a/mjo/interpolation.py +++ b/mjo/interpolation.py @@ -93,70 +93,67 @@ def divided_difference_coefficients(xs): for xj in xs ] return coeffs -def divided_difference(f, xs): +def divided_difference(xs, ys): """ - Return the Newton divided difference of `f` at the points - `xs`. Reference: + Return the Newton divided difference of the points (xs[k], + ys[k]). Reference: http://en.wikipedia.org/wiki/Divided_differences INPUT: - - ``f`` -- The function whose divided difference we seek. + - ``xs`` -- The list of x-values. - - ``xs`` -- The list of points at which to compute `f`. + - ``ys`` -- The function values at `xs`. OUTPUT: - The divided difference of `f` at ``xs``. + The (possibly symbolic) divided difference function. TESTS:: - sage: divided_difference(sin, [0]) + sage: xs = [0] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 - sage: divided_difference(sin, [0, pi]) + sage: xs = [0, pi] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 - sage: divided_difference(sin, [0, pi, 2*pi]) + sage: xs = [0, pi, 2*pi] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 We try something entirely symbolic:: sage: f = function('f', x) - sage: divided_difference(f, [x]) + sage: divided_difference([x], [f(x=x)]) f(x) sage: x1,x2 = var('x1,x2') - sage: divided_difference(f, [x1,x2]) - (f(x1) - f(x2))/(x1 - x2) + sage: divided_difference([x1,x2], [f(x=x1),f(x=x2)]) + f(x1)/(x1 - x2) - f(x2)/(x1 - x2) """ - if (len(xs) == 1): - # Avoid that goddamned DeprecationWarning when we have a named - # argument but don't know what it is. - if len(f.variables()) == 0: - return f(xs[0]) - else: - v = f.variables()[0] - return f({ v: xs[0] }) - - # Use the recursive definition. - numerator = divided_difference(f, xs[1:]) - numerator -= divided_difference(f, xs[:-1]) - return numerator / (xs[-1] - xs[0]) - - -def newton_polynomial(f, x, xs): + coeffs = divided_difference_coefficients(xs) + v_cs = vector(coeffs) + v_ys = vector(ys) + return v_cs.dot_product(v_ys) + + +def newton_polynomial(x, xs, ys): """ - Return the Newton form of the interpolating polynomial of `f` at - the points `xs` in the variable `x`. + Return the Newton form of the interpolating polynomial of the + points (xs[k], ys[k]) in the variable `x`. INPUT: - - ``f`` -- The function to interpolate. - - ``x`` -- The independent variable to use for the interpolating polynomial. - - ``xs`` -- The list of points at which to interpolate `f`. + - ``xs`` -- The list of x-values. + + - ``ys`` -- The function values at `xs`. OUTPUT: @@ -167,7 +164,7 @@ def newton_polynomial(f, x, xs): sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] sage: ys = map(sin, xs) sage: L = lagrange_polynomial(x, xs, ys) - sage: N = newton_polynomial(sin, x, xs) + sage: N = newton_polynomial(x, xs, ys) sage: bool(N == L) True @@ -177,7 +174,7 @@ def newton_polynomial(f, x, xs): N = SR(0) for k in range(0, degree+1): - term = divided_difference(f, xs[:k+1]) + term = divided_difference(xs[:k+1], ys[:k+1]) term *= product([ x - xk for xk in xs[:k]]) N += term -- 2.44.2