From e324a6a99a9dee32fda234c5a5b941b510b45e02 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 14 Oct 2016 13:47:10 -0400 Subject: [PATCH] Do a bunch more work on the intro/background. --- doc/README.rst | 96 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) diff --git a/doc/README.rst b/doc/README.rst index 2a01957..6d00dee 100644 --- a/doc/README.rst +++ b/doc/README.rst @@ -114,6 +114,102 @@ is linear, the set :math:`K` is a symmetric cone in :math:`V`, and the points :math:`e_{1}` and :math:`e_{2}` belong to :math:`\operatorname{int}\left(K\right)`. +**Definition.** The strategy sets for our linear game are + +.. math:: + \begin{aligned} + \Delta_{1}\left(L,K,e_{1},e_{2}\right) &= + \left\lbrace + x \in K\ \middle|\ \left\langle x,e_{2} \right\rangle = 1 + \right\rbrace\\ + \Delta_{2}\left(L,K,e_{1},e_{2}\right) &= + \left\lbrace + y \in K\ \middle|\ \left\langle y,e_{1} \right\rangle = 1 + \right\rbrace. + \end{aligned} + +Since :math:`e_{1},e_{2} \in \operatorname{int}\left(K\right)`, these +are bases for :math:`K`. We will usually omit the arguments and write +:math:`\Delta_{i}` to mean :math:`\Delta_{i}\left(L,K,e_{1},e_{2}\right)`. + +To play the game :math:`\left(L,K,e_{1},e_{2}\right)`, the first +player chooses an :math:`x \in \Delta_{1}`, and the second player +independently chooses a :math:`y \in \Delta_{2}`. This completes the +turn, and the payoffs are determined by applying the payoff operator +:math:`\left(x,y\right) \mapsto \left\langle L\left(x\right), y +\right\rangle`. The payoff to the first player is :math:`\left\langle +L\left(x\right), y \right\rangle`, and since we want the game to be +zero-sum, the payoff to the second player is :math:`-\left\langle +L\left(x\right), y \right\rangle`. + +The payoff operator is continuous in both arguments because it is +bilinear and the ambient space is finite-dimensional. We constructed +the strategy sets :math:`\Delta_{1}` and :math:`\Delta_{2}` to be +compact and convex; as a result, Karlin's [Karlin]_ general min-max +Theorem 1.5.1, guarantees the existence of optimal strategies for both +players. + +**Definition.** A pair :math:`\left(\bar{x},\bar{y}\right) \in +\Delta_{1} \times \Delta_{2}` is an *optimal pair* for the game +:math:`\left(L,K,e_{1},e_{2}\right)` if it satisfies the *saddle-point +inequality*, + +.. math:: + \left\langle L\left(x\right),\bar{y} \right\rangle + \le + \left\langle L\left( \bar{x}\right), \bar{y} \right\rangle + \le + \left\langle L\left(\bar{x}\right),y \right\rangle + \text{ for all } + \left(x,y\right) \in \Delta_{1} \times \Delta_{2}. + +At an optimal pair, neither player can unilaterally increase his +payoff by changing his strategy. The value :math:`\left\langle L +\left( \bar{x} \right) , \bar{y} \right\rangle` is unique (by the same +min-max theorem); it is shared by all optimal pairs. There exists at +least one optimal pair :math:`\left(\bar{x},\bar{y}\right)` of the +game :math:`\left(L,K,e_{1},e_{2}\right)` and its *value* is +:math:`v\left(L,K,e_{1},e_{2}\right) = \left\langle +L\left(\bar{x}\right), \bar{y} \right\rangle`. + +Thanks to Karlin [Karlin]_, we have an equivalent characterization of +a game's value that does not require us to have a particular optimal +pair in mind, + +.. math:: + v\left( L,K,e_{1},e_{2} \right) + = + \underset{x \in \Delta_{1}}{\max}\ + \underset{y\in \Delta_{2}}{\min}\ + \left\langle L\left(x\right),y \right\rangle + = + \underset{y\in \Delta_{2}}{\min}\ + \underset{x \in \Delta_{1}}{\max}\ + \left\langle L\left(x\right),y \right\rangle. + +Linear games reduce to two-person zero-sum matrix games in the +right setting. + +**Example.** If :math:`K = \mathbb{R}^{n}_{+}` in :math:`V = +\mathbb{R}^{n}` and :math:`e_{1} = e_{2} = +\left(1,1,\ldots,1\right)^{T} \in \operatorname{int}\left(K\right)`, +then :math:`\Delta_{1} = \Delta_{2} = \Delta`. For any :math:`L \in +\mathbb{R}^{n \times n}`, the linear game :math:`\left( +L,K,e_{2},e_{2} \right)` is a two-person zero-sum matrix game. Its +payoff is :math:`\left(x,y\right) \mapsto y^{T}Lx`, and its value is + +.. math:: + v\left( L,K,e_{1},e_{2} \right) + = + \underset{x \in \Delta}{\max}\ + \underset{y\in \Delta}{\min}\ + \left( y^{T}Lx \right) + = + \underset{y\in \Delta}{\min}\ + \underset{x \in \Delta}{\max}\ + \left( y^{T}Lx \right). + + References ---------- -- 2.44.2