From e1afe36d43412f49e58daa12e7ef91921dc339a1 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 5 Jul 2019 22:58:04 -0400 Subject: [PATCH] eja: begin implementing the complex hermitian simple EJA. --- mjo/eja/euclidean_jordan_algebra.py | 56 +++++++++++++++++++++++++++-- 1 file changed, 53 insertions(+), 3 deletions(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index f9da3fa..5d17e88 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -758,7 +758,48 @@ def _embed_complex_matrix(M): a = z.real() b = z.imag() blocks.append(matrix(field, 2, [[a,-b],[b,a]])) - return block_matrix(field, n, blocks) + + # We can drop the imaginaries here. + return block_matrix(field.base_ring(), n, blocks) + + +def _unembed_complex_matrix(M): + """ + The inverse of _embed_complex_matrix(). + + EXAMPLES:: + + sage: A = matrix(QQ,[ [ 1, 2, 3, 4], + ....: [-2, 1, -4, 3], + ....: [ 9, 10, 11, 12], + ....: [-10, 9, -12, 11] ]) + sage: _unembed_complex_matrix(A) + [ -2*i + 1 -4*i + 3] + [ -10*i + 9 -12*i + 11] + """ + n = ZZ(M.nrows()) + if M.ncols() != n: + raise ArgumentError("the matrix 'M' must be square") + if not n.mod(2).is_zero(): + raise ArgumentError("the matrix 'M' must be a complex embedding") + + F = QuadraticField(-1, 'i') + i = F.gen() + + # Go top-left to bottom-right (reading order), converting every + # 2-by-2 block we see to a single complex element. + elements = [] + for k in xrange(n/2): + for j in xrange(n/2): + submat = M[2*k:2*k+2,2*j:2*j+2] + if submat[0,0] != submat[1,1]: + raise ArgumentError('bad real submatrix') + if submat[0,1] != -submat[1,0]: + raise ArgumentError('bad imag submatrix') + z = submat[0,0] + submat[1,0]*i + elements.append(z) + + return matrix(F, n/2, elements) def RealSymmetricSimpleEJA(n): @@ -769,14 +810,23 @@ def RealSymmetricSimpleEJA(n): """ pass -def ComplexHermitianSimpleEJA(n): +def ComplexHermitianSimpleEJA(n, field=QQ): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, and the real-part-of-trace inner product. It has dimension `n^2 over the reals. """ - pass + F = QuadraticField(-1, 'i') + i = F.gen() + S = _real_symmetric_basis(n, field=F) + T = [] + for s in S: + T.append(s) + T.append(i*s) + embed_T = [ _embed_complex_matrix(t) for t in T ] + Qs = _multiplication_table_from_matrix_basis(embed_T) + return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n) def QuaternionHermitianSimpleEJA(n): """ -- 2.44.2