From d7e30d8df7b8e670c24c2b92bf1257c3e0a3617a Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sat, 20 Jul 2019 22:25:32 -0400 Subject: [PATCH] eja: rename JordanSpinAlgebra to JordanSpinEJA. --- mjo/eja/euclidean_jordan_algebra.py | 32 ++++++++++++++--------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 579be23..fa112a3 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -144,7 +144,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): :: - sage: J = JordanSpinAlgebra(2) + sage: J = JordanSpinEJA(2) sage: J.basis() Family (e0, e1) sage: J.natural_basis() @@ -296,7 +296,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): inner product on `R^n` (this example only works because the basis for the Jordan algebra is the standard basis in `R^n`):: - sage: J = JordanSpinAlgebra(3) + sage: J = JordanSpinEJA(3) sage: x = vector(QQ,[1,2,3]) sage: y = vector(QQ,[4,5,6]) sage: x.inner_product(y) @@ -391,12 +391,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): EXAMPLES:: - sage: J = JordanSpinAlgebra(2) + sage: J = JordanSpinEJA(2) sage: e0,e1 = J.gens() sage: x = e0 + e1 sage: x.det() 0 - sage: J = JordanSpinAlgebra(3) + sage: J = JordanSpinEJA(3) sage: e0,e1,e2 = J.gens() sage: x = e0 + e1 + e2 sage: x.det() @@ -425,7 +425,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: set_random_seed() sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinAlgebra(n) + sage: J = JordanSpinEJA(n) sage: x = J.random_element() sage: while x.is_zero(): ....: x = J.random_element() @@ -555,7 +555,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): The identity element always has degree one, but any element linearly-independent from it is regular:: - sage: J = JordanSpinAlgebra(5) + sage: J = JordanSpinEJA(5) sage: J.one().is_regular() False sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity @@ -580,7 +580,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): EXAMPLES:: - sage: J = JordanSpinAlgebra(4) + sage: J = JordanSpinEJA(4) sage: J.one().degree() 1 sage: e0,e1,e2,e3 = J.gens() @@ -592,7 +592,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: set_random_seed() sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinAlgebra(n) + sage: J = JordanSpinEJA(n) sage: x = J.random_element() sage: x == x.coefficient(0)*J.one() or x.degree() == 2 True @@ -624,7 +624,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: set_random_seed() sage: n = ZZ.random_element(2,10) - sage: J = JordanSpinAlgebra(n) + sage: J = JordanSpinEJA(n) sage: y = J.random_element() sage: while y == y.coefficient(0)*J.one(): ....: y = J.random_element() @@ -784,7 +784,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: set_random_seed() sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinAlgebra(n) + sage: J = JordanSpinEJA(n) sage: x = J.random_element() sage: x_vec = x.vector() sage: x0 = x_vec[0] @@ -931,7 +931,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: c = J.random_element().subalgebra_idempotent() sage: c^2 == c True - sage: J = JordanSpinAlgebra(5) + sage: J = JordanSpinEJA(5) sage: c = J.random_element().subalgebra_idempotent() sage: c^2 == c True @@ -987,7 +987,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): EXAMPLES:: - sage: J = JordanSpinAlgebra(3) + sage: J = JordanSpinEJA(3) sage: e0,e1,e2 = J.gens() sage: x = e0 + e1 + e2 sage: x.trace() @@ -1085,7 +1085,7 @@ def random_eja(): """ n = ZZ.random_element(1,5) constructor = choice([eja_rn, - JordanSpinAlgebra, + JordanSpinEJA, RealSymmetricSimpleEJA, ComplexHermitianSimpleEJA, QuaternionHermitianSimpleEJA]) @@ -1634,7 +1634,7 @@ def OctonionHermitianSimpleEJA(n): n = 3 pass -class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra): +class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra): """ The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` with the usual inner product and jordan product ``x*y = @@ -1645,7 +1645,7 @@ class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra): This multiplication table can be verified by hand:: - sage: J = JordanSpinAlgebra(4) + sage: J = JordanSpinEJA(4) sage: e0,e1,e2,e3 = J.gens() sage: e0*e0 e0 @@ -1678,7 +1678,7 @@ class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra): Qi[0,0] = Qi[0,0] * ~field(2) Qs.append(Qi) - fdeja = super(JordanSpinAlgebra, cls) + fdeja = super(JordanSpinEJA, cls) return fdeja.__classcall_private__(cls, field, Qs) def rank(self): -- 2.44.2