From d64a39531527febd636ef2bab3074b9e17014e7a Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Thu, 18 Jul 2019 19:04:12 -0400 Subject: [PATCH] eja: fix alphabetical ordering of element methods. --- mjo/eja/euclidean_jordan_algebra.py | 171 ++++++++++++++-------------- 1 file changed, 85 insertions(+), 86 deletions(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 59e1537..8d9b27e 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -461,6 +461,91 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return self.span_of_powers().dimension() + def minimal_polynomial(self): + """ + EXAMPLES:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + :: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + The minimal polynomial and the characteristic polynomial coincide + and are known (see Alizadeh, Example 11.11) for all elements of + the spin factor algebra that aren't scalar multiples of the + identity:: + + sage: set_random_seed() + sage: n = ZZ.random_element(2,10) + sage: J = JordanSpinSimpleEJA(n) + sage: y = J.random_element() + sage: while y == y.coefficient(0)*J.one(): + ....: y = J.random_element() + sage: y0 = y.vector()[0] + sage: y_bar = y.vector()[1:] + sage: actual = y.minimal_polynomial() + sage: x = SR.symbol('x', domain='real') + sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2) + sage: bool(actual == expected) + True + + """ + # The element we're going to call "minimal_polynomial()" on. + # Either myself, interpreted as an element of a finite- + # dimensional algebra, or an element of an associative + # subalgebra. + elt = None + + if self.parent().is_associative(): + elt = FiniteDimensionalAlgebraElement(self.parent(), self) + else: + V = self.span_of_powers() + assoc_subalg = self.subalgebra_generated_by() + # Mis-design warning: the basis used for span_of_powers() + # and subalgebra_generated_by() must be the same, and in + # the same order! + elt = assoc_subalg(V.coordinates(self.vector())) + + # Recursive call, but should work since elt lives in an + # associative algebra. + return elt.minimal_polynomial() + + + def natural_representation(self): + """ + Return a more-natural representation of this element. + + Every finite-dimensional Euclidean Jordan Algebra is a + direct sum of five simple algebras, four of which comprise + Hermitian matrices. This method returns the original + "natural" representation of this element as a Hermitian + matrix, if it has one. If not, you get the usual representation. + + EXAMPLES:: + + sage: J = ComplexHermitianSimpleEJA(3) + sage: J.one() + e0 + e5 + e8 + sage: J.one().natural_representation() + [1 0 0 0 0 0] + [0 1 0 0 0 0] + [0 0 1 0 0 0] + [0 0 0 1 0 0] + [0 0 0 0 1 0] + [0 0 0 0 0 1] + + """ + B = self.parent().natural_basis() + W = B[0].matrix_space() + return W.linear_combination(zip(self.vector(), B)) + def operator_matrix(self): """ @@ -529,92 +614,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return fda_elt.matrix().transpose() - def natural_representation(self): - """ - Return a more-natural representation of this element. - - Every finite-dimensional Euclidean Jordan Algebra is a - direct sum of five simple algebras, four of which comprise - Hermitian matrices. This method returns the original - "natural" representation of this element as a Hermitian - matrix, if it has one. If not, you get the usual representation. - - EXAMPLES:: - - sage: J = ComplexHermitianSimpleEJA(3) - sage: J.one() - e0 + e5 + e8 - sage: J.one().natural_representation() - [1 0 0 0 0 0] - [0 1 0 0 0 0] - [0 0 1 0 0 0] - [0 0 0 1 0 0] - [0 0 0 0 1 0] - [0 0 0 0 0 1] - - """ - B = self.parent().natural_basis() - W = B[0].matrix_space() - return W.linear_combination(zip(self.vector(), B)) - - - def minimal_polynomial(self): - """ - EXAMPLES:: - - sage: set_random_seed() - sage: x = random_eja().random_element() - sage: x.degree() == x.minimal_polynomial().degree() - True - - :: - - sage: set_random_seed() - sage: x = random_eja().random_element() - sage: x.degree() == x.minimal_polynomial().degree() - True - - The minimal polynomial and the characteristic polynomial coincide - and are known (see Alizadeh, Example 11.11) for all elements of - the spin factor algebra that aren't scalar multiples of the - identity:: - - sage: set_random_seed() - sage: n = ZZ.random_element(2,10) - sage: J = JordanSpinSimpleEJA(n) - sage: y = J.random_element() - sage: while y == y.coefficient(0)*J.one(): - ....: y = J.random_element() - sage: y0 = y.vector()[0] - sage: y_bar = y.vector()[1:] - sage: actual = y.minimal_polynomial() - sage: x = SR.symbol('x', domain='real') - sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2) - sage: bool(actual == expected) - True - - """ - # The element we're going to call "minimal_polynomial()" on. - # Either myself, interpreted as an element of a finite- - # dimensional algebra, or an element of an associative - # subalgebra. - elt = None - - if self.parent().is_associative(): - elt = FiniteDimensionalAlgebraElement(self.parent(), self) - else: - V = self.span_of_powers() - assoc_subalg = self.subalgebra_generated_by() - # Mis-design warning: the basis used for span_of_powers() - # and subalgebra_generated_by() must be the same, and in - # the same order! - elt = assoc_subalg(V.coordinates(self.vector())) - - # Recursive call, but should work since elt lives in an - # associative algebra. - return elt.minimal_polynomial() - - def quadratic_representation(self, other=None): """ Return the quadratic representation of this element. -- 2.44.2