From d0cc3207942444e075a8046c3d45446d3cb4f4d4 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Tue, 1 Jul 2025 09:52:33 -0400 Subject: [PATCH] mjo/cone/isomorphism.py: cite Gowda/Trott for the l1-cone --- mjo/cone/isomorphism.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/mjo/cone/isomorphism.py b/mjo/cone/isomorphism.py index 61cea42..ff9785d 100644 --- a/mjo/cone/isomorphism.py +++ b/mjo/cone/isomorphism.py @@ -65,6 +65,13 @@ def linear_isomorphisms(K1, K2): to vector-space isomorphisms of the lineality spaces and othogonal complements. + REFERENCES: + + .. [GowdaTrott2014] \M. Seetharama Gowda and D. Trott. On the + irreducibility, Lyapunov rank, and automorphisms of special + Bishop–Phelps cones. Journal of Mathematical Analysis and + Applications, 419(1):172-184, 2014. + SETUP:: sage: from mjo.cone.isomorphism import linear_isomorphisms @@ -107,7 +114,9 @@ def linear_isomorphisms(K1, K2): Automorphisms can be obtained by passing ``K2 == K1``. In this case, there are many duplicates so we use ``set()`` to obtain - only the unique automorphisms:: + distinct transformations. Gowda and Trott_[GowdaTrott2014] have + computed the automorphism group of this cone, and we recover them + all up to a positive scalar:: sage: K1 = Cone([(1,0,1), (-1,0,1), (0,1,1), (0,-1,1)]) sage: set(linear_isomorphisms(K1,K1)) @@ -169,7 +178,6 @@ def linear_isomorphisms(K1, K2): ....: for g in linear_isomorphisms(K1,K2) ....: ) True - """ # There are no invertible maps between lattices of different # dimensions. -- 2.49.0