From c27983908a6e5349251894fa6e9c716d88eeaa3b Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Wed, 3 Jul 2019 19:36:13 -0400 Subject: [PATCH] eja: add the simple algebra S^n. --- mjo/eja/euclidean_jordan_algebra.py | 58 +++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 2404af0..f71f75d 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -596,3 +596,61 @@ def eja_ln(dimension, field=QQ): # ambient dimension). rank = min(dimension,2) return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank) + + +def eja_sn(dimension, field=QQ): + """ + Return the simple Jordan algebra of ``dimension``-by-``dimension`` + symmetric matrices over ``field``. + + EXAMPLES:: + + sage: J = eja_sn(2) + sage: e0, e1, e2 = J.gens() + sage: e0*e0 + e0 + sage: e1*e1 + e0 + e2 + sage: e2*e2 + e2 + + """ + Qs = [] + + # In S^2, for example, we nominally have four coordinates even + # though the space is of dimension three only. The vector space V + # is supposed to hold the entire long vector, and the subspace W + # of V will be spanned by the vectors that arise from symmetric + # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3. + V = VectorSpace(field, dimension**2) + + # The basis of symmetric matrices, as matrices, in their R^(n-by-n) + # coordinates. + S = [] + + for i in xrange(dimension): + for j in xrange(i+1): + Eij = matrix(field, dimension, lambda k,l: k==i and l==j) + if i == j: + Sij = Eij + else: + Sij = Eij + Eij.transpose() + S.append(Sij) + + def mat2vec(m): + return vector(field, m.list()) + + W = V.span( mat2vec(s) for s in S ) + + for s in S: + # Brute force the right-multiplication-by-s matrix by looping + # through all elements of the basis and doing the computation + # to find out what the corresponding row should be. + Q_rows = [] + for t in S: + this_row = mat2vec((s*t + t*s)/2) + Q_rows.append(W.coordinates(this_row)) + Q = matrix(field,Q_rows) + Qs.append(Q) + + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension) -- 2.44.2