From bc02bf48592e22d034310cfffef8fb2a062c0a43 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Tue, 9 Mar 2021 18:51:29 -0500 Subject: [PATCH] eja: factor out MatrixEJA initialization. --- mjo/eja/eja_algebra.py | 77 +++++++++++++----------------------------- mjo/eja/eja_element.py | 30 +++++----------- 2 files changed, 32 insertions(+), 75 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 4ee5aba..b2891e5 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1746,7 +1746,7 @@ class ConcreteEJA(FiniteDimensionalEJA): return eja_class.random_instance(*args, **kwargs) -class MatrixEJA: +class MatrixEJA(FiniteDimensionalEJA): @staticmethod def _denormalized_basis(A): """ @@ -1887,8 +1887,23 @@ class MatrixEJA: return tr.real() + def __init__(self, matrix_space, **kwargs): + # We know this is a valid EJA, but will double-check + # if the user passes check_axioms=True. + if "check_axioms" not in kwargs: kwargs["check_axioms"] = False + + + super().__init__(self._denormalized_basis(matrix_space), + self.jordan_product, + self.trace_inner_product, + field=matrix_space.base_ring(), + matrix_space=matrix_space, + **kwargs) + + self.rank.set_cache(matrix_space.nrows()) + self.one.set_cache( self(matrix_space.one()) ) -class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): +class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): """ The rank-n simple EJA consisting of real symmetric n-by-n matrices, the usual symmetric Jordan product, and the trace inner @@ -1971,22 +1986,11 @@ class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): if "check_axioms" not in kwargs: kwargs["check_axioms"] = False A = MatrixSpace(field, n) - super().__init__(self._denormalized_basis(A), - self.jordan_product, - self.trace_inner_product, - field=field, - matrix_space=A, - **kwargs) - - # TODO: this could be factored out somehow, but is left here - # because the MatrixEJA is not presently a subclass of the - # FDEJA class that defines rank() and one(). - self.rank.set_cache(n) - self.one.set_cache( self(A.one()) ) + super().__init__(A, **kwargs) -class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): +class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, @@ -2064,18 +2068,7 @@ class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): from mjo.hurwitz import ComplexMatrixAlgebra A = ComplexMatrixAlgebra(n, scalars=field) - super().__init__(self._denormalized_basis(A), - self.jordan_product, - self.trace_inner_product, - field=field, - matrix_space=A, - **kwargs) - - # TODO: this could be factored out somehow, but is left here - # because the MatrixEJA is not presently a subclass of the - # FDEJA class that defines rank() and one(). - self.rank.set_cache(n) - self.one.set_cache( self(A.one()) ) + super().__init__(A, **kwargs) @staticmethod @@ -2091,7 +2084,7 @@ class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): return cls(n, **kwargs) -class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): +class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): r""" The rank-n simple EJA consisting of self-adjoint n-by-n quaternion matrices, the usual symmetric Jordan product, and the @@ -2155,18 +2148,7 @@ class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): from mjo.hurwitz import QuaternionMatrixAlgebra A = QuaternionMatrixAlgebra(n, scalars=field) - super().__init__(self._denormalized_basis(A), - self.jordan_product, - self.trace_inner_product, - field=field, - matrix_space=A, - **kwargs) - - # TODO: this could be factored out somehow, but is left here - # because the MatrixEJA is not presently a subclass of the - # FDEJA class that defines rank() and one(). - self.rank.set_cache(n) - self.one.set_cache( self(A.one()) ) + super().__init__(A, **kwargs) @staticmethod @@ -2184,7 +2166,7 @@ class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): n = ZZ.random_element(cls._max_random_instance_size() + 1) return cls(n, **kwargs) -class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): +class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): r""" SETUP:: @@ -2297,18 +2279,7 @@ class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): from mjo.hurwitz import OctonionMatrixAlgebra A = OctonionMatrixAlgebra(n, scalars=field) - super().__init__(self._denormalized_basis(A), - self.jordan_product, - self.trace_inner_product, - field=field, - matrix_space=A, - **kwargs) - - # TODO: this could be factored out somehow, but is left here - # because the MatrixEJA is not presently a subclass of the - # FDEJA class that defines rank() and one(). - self.rank.set_cache(n) - self.one.set_cache( self(A.one()) ) + super().__init__(A, **kwargs) class AlbertEJA(OctonionHermitianEJA): diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 6a48309..c98d9a2 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -389,7 +389,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: (x*y).det() == x.det()*y.det() True - The determinant in matrix algebras is just the usual determinant:: + The determinant in real matrix algebras is the usual determinant:: sage: set_random_seed() sage: X = matrix.random(QQ,3) @@ -404,21 +404,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: actual2 == expected True - :: - - sage: set_random_seed() - sage: J1 = ComplexHermitianEJA(2) - sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False) - sage: X = matrix.random(GaussianIntegers(), 2) - sage: X = X + X.H - sage: expected = AA(X.det()) - sage: actual1 = J1(J1.real_embed(X)).det() - sage: actual2 = J2(J2.real_embed(X)).det() - sage: expected == actual1 - True - sage: expected == actual2 - True - """ P = self.parent() r = P.rank() @@ -1098,12 +1083,13 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: J.one() b0 + b3 + b8 sage: J.one().to_matrix() - [1 0 0 0 0 0] - [0 1 0 0 0 0] - [0 0 1 0 0 0] - [0 0 0 1 0 0] - [0 0 0 0 1 0] - [0 0 0 0 0 1] + +---+---+---+ + | 1 | 0 | 0 | + +---+---+---+ + | 0 | 1 | 0 | + +---+---+---+ + | 0 | 0 | 1 | + +---+---+---+ :: -- 2.44.2