From bbd6d4c6e39870b0936949b510e70af2b5358f9e Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sat, 12 Oct 2019 20:02:23 -0400 Subject: [PATCH] =?utf8?q?eja:=20declare=20a=20utf-8=20encoding=20and=20us?= =?utf8?q?e=20it=20to=20write=20Kor=C3=A1nyi.?= MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit --- mjo/eja/eja_element.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 5944c07..eee8f69 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1,3 +1,5 @@ +# -*- coding: utf-8 -*- + from itertools import izip from sage.matrix.constructor import matrix @@ -34,7 +36,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Return ``self`` raised to the power ``n``. Jordan algebras are always power-associative; see for - example Faraut and Koranyi, Proposition II.1.2 (ii). + example Faraut and Korányi, Proposition II.1.2 (ii). We have to override this because our superclass uses row vectors instead of column vectors! We, on the other hand, @@ -375,7 +377,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): True Ensure that the determinant is multiplicative on an associative - subalgebra as in Faraut and Koranyi's Proposition II.2.2:: + subalgebra as in Faraut and Korányi's Proposition II.2.2:: sage: set_random_seed() sage: J = random_eja().random_element().subalgebra_generated_by() @@ -460,7 +462,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): ... ValueError: element is not invertible - Proposition II.2.3 in Faraut and Koranyi says that the inverse + Proposition II.2.3 in Faraut and Korányi says that the inverse of an element is the inverse of its left-multiplication operator applied to the algebra's identity, when that inverse exists:: -- 2.44.2