From ad8ae5e58eb254bd6512325b634198109d13b23a Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Thu, 28 Nov 2024 20:17:14 -0500 Subject: [PATCH] mjo/eja/eja_operator.py: add some "long time" labels --- mjo/eja/eja_operator.py | 24 +++++++++++++----------- 1 file changed, 13 insertions(+), 11 deletions(-) diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 0f1652a..698bc87 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -866,7 +866,9 @@ class EJAOperator(Map): Again we repeat with a _specific_ example whose scalars are algebraic; anything larger than this takes too long (though - `n=3` is doable if you're willing to wait five minutes):: + `n=3` is doable if you're willing to wait five minutes). Even + this one can be slow if your random algebraic numbers are + unlucky:: sage: J = ComplexHermitianEJA(2) sage: U = random_unitary_matrix(QQbar, 2) @@ -875,25 +877,25 @@ class EJAOperator(Map): sage: L = lambda X: J((UU.conjugate_transpose()*X*UU)) sage: columns = ( L(b).to_vector() for b in J.matrix_basis() ) sage: MS = MatrixSpace(J.base_ring(), J.dimension(), J.dimension()) - sage: M = MS(columns).transpose() - sage: L = EJAOperator(J,J,M) - sage: L.is_isomorphism() + sage: M = MS(columns).transpose() # long time + sage: L = EJAOperator(J,J,M) # long time + sage: L.is_isomorphism() # long time True - sage: L.inverse().is_isomorphism() + sage: L.inverse().is_isomorphism() # long time True - sage: (L^2).is_isomorphism() + sage: (L^2).is_isomorphism() # long time True sage: L = lambda X: J((UU.conjugate_transpose()*X.conjugate()*UU)) sage: columns = ( L(b).to_vector() for b in J.matrix_basis() ) sage: MS = MatrixSpace(J.base_ring(), J.dimension(), J.dimension()) - sage: M = MS(columns).transpose() - sage: L = EJAOperator(J,J,M) - sage: L.is_isomorphism() + sage: M = MS(columns).transpose() # long time + sage: L = EJAOperator(J,J,M) # long time + sage: L.is_isomorphism() # long time True - sage: L.inverse().is_isomorphism() + sage: L.inverse().is_isomorphism() # long time True - sage: (L^2).is_isomorphism() + sage: (L^2).is_isomorphism() # long time True TESTS: -- 2.49.0