From aa66e172b613a14b00df501c210fb334e1effcc5 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sun, 28 Jul 2019 11:24:49 -0400 Subject: [PATCH] eja: replace element operator_matrix() entirely. --- mjo/eja/euclidean_jordan_algebra.py | 37 ++++++----------------------- 1 file changed, 7 insertions(+), 30 deletions(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index ba2c63c..cc44f61 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -1352,7 +1352,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # We get back a symbolic polynomial in 'x' but want a real # polynomial in 't'. - p_of_x = elt.operator_matrix().minimal_polynomial() + p_of_x = elt.operator().matrix().minimal_polynomial() return p_of_x.change_variable_name('t') @@ -1422,34 +1422,11 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): """ P = self.parent() + fda_elt = FiniteDimensionalAlgebraElement(P, self) return FiniteDimensionalEuclideanJordanAlgebraOperator( - P,P, - self.operator_matrix() ) - - - - def operator_matrix(self): - """ - Return the matrix that represents left- (or right-) - multiplication by this element in the parent algebra. - - We implement this ourselves to work around the fact that - our parent class represents everything with row vectors. - - EXAMPLES: - - Ensure that our operator's ``matrix`` method agrees with - this implementation:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: x.operator().matrix() == x.operator_matrix() - True - - """ - fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self) - return fda_elt.matrix().transpose() + P, + P, + fda_elt.matrix().transpose() ) def quadratic_representation(self, other=None): @@ -1671,7 +1648,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): s = 0 minimal_dim = V.dimension() for i in xrange(1, V.dimension()): - this_dim = (u**i).operator_matrix().image().dimension() + this_dim = (u**i).operator().matrix().image().dimension() if this_dim < minimal_dim: minimal_dim = this_dim s = i @@ -1688,7 +1665,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # Beware, solve_right() means that we're using COLUMN vectors. # Our FiniteDimensionalAlgebraElement superclass uses rows. u_next = u**(s+1) - A = u_next.operator_matrix() + A = u_next.operator().matrix() c_coordinates = A.solve_right(u_next.vector()) # Now c_coordinates is the idempotent we want, but it's in -- 2.44.2