From 83d718190836138f62989d68c7b44494ed52c9fd Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Wed, 24 Feb 2021 11:12:28 -0500 Subject: [PATCH] eja: delete obsolete cartesian product methods. --- mjo/eja/eja_algebra.py | 89 ------------------------------------------ 1 file changed, 89 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index c862b0d..51ff790 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -2823,19 +2823,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, ... ValueError: all factors must share the same base field - The "cached" Jordan and inner products are the componentwise - ones:: - - sage: set_random_seed() - sage: J1 = random_eja() - sage: J2 = random_eja() - sage: J = cartesian_product([J1,J2]) - sage: x,y = J.random_elements(2) - sage: x*y == J.cartesian_jordan_product(x,y) - True - sage: x.inner_product(y) == J.cartesian_inner_product(x,y) - True - The cached unit element is the same one that would be computed:: sage: set_random_seed() # long time @@ -3112,82 +3099,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix()) - def cartesian_jordan_product(self, x, y): - r""" - The componentwise Jordan product. - - We project ``x`` and ``y`` onto our factors, and add up the - Jordan products from the subalgebras. This may still be useful - after (if) the default Jordan product in the Cartesian product - algebra is overridden. - - SETUP:: - - sage: from mjo.eja.eja_algebra import (HadamardEJA, - ....: JordanSpinEJA) - - EXAMPLE:: - - sage: J1 = HadamardEJA(3) - sage: J2 = JordanSpinEJA(3) - sage: J = cartesian_product([J1,J2]) - sage: x1 = J1.from_vector(vector(QQ,(1,2,1))) - sage: y1 = J1.from_vector(vector(QQ,(1,0,2))) - sage: x2 = J2.from_vector(vector(QQ,(1,2,3))) - sage: y2 = J2.from_vector(vector(QQ,(1,1,1))) - sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3))) - sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1))) - sage: (x1*y1).to_vector() - (1, 0, 2) - sage: (x2*y2).to_vector() - (6, 3, 4) - sage: J.cartesian_jordan_product(z1,z2).to_vector() - (1, 0, 2, 6, 3, 4) - - """ - m = len(self.cartesian_factors()) - projections = ( self.cartesian_projection(i) for i in range(m) ) - products = ( P(x)*P(y) for P in projections ) - return self._cartesian_product_of_elements(tuple(products)) - - def cartesian_inner_product(self, x, y): - r""" - The standard componentwise Cartesian inner-product. - - We project ``x`` and ``y`` onto our factors, and add up the - inner-products from the subalgebras. This may still be useful - after (if) the default inner product in the Cartesian product - algebra is overridden. - - SETUP:: - - sage: from mjo.eja.eja_algebra import (HadamardEJA, - ....: QuaternionHermitianEJA) - - EXAMPLE:: - - sage: J1 = HadamardEJA(3,field=QQ) - sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False) - sage: J = cartesian_product([J1,J2]) - sage: x1 = J1.one() - sage: x2 = x1 - sage: y1 = J2.one() - sage: y2 = y1 - sage: x1.inner_product(x2) - 3 - sage: y1.inner_product(y2) - 2 - sage: z1 = J._cartesian_product_of_elements((x1,y1)) - sage: z2 = J._cartesian_product_of_elements((x2,y2)) - sage: J.cartesian_inner_product(z1,z2) - 5 - - """ - m = len(self.cartesian_factors()) - projections = ( self.cartesian_projection(i) for i in range(m) ) - return sum( P(x).inner_product(P(y)) for P in projections ) - - def _element_constructor_(self, elt): r""" Construct an element of this algebra from an ordered tuple. -- 2.44.2