From 77d2d169ac8a3e46030ee98e6bdb45df418a59c2 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Tue, 9 Mar 2021 12:04:37 -0500 Subject: [PATCH] eja: fix some tests, speed improvements. --- mjo/eja/eja_algebra.py | 17 +++++++++++------ mjo/matrix_algebra.py | 19 ++++++++++--------- 2 files changed, 21 insertions(+), 15 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 106a0cd..7255533 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1021,7 +1021,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False) sage: J.matrix_space() - Full MatrixSpace of 4 by 4 dense matrices over Rational Field + Module of 2 by 2 matrices with entries in Algebraic Field over + the scalar ring Rational Field sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False) sage: J.matrix_space() Module of 1 by 1 matrices with entries in Quaternion @@ -2162,6 +2163,7 @@ class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA, ....: OctonionHermitianEJA) + sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra EXAMPLES: @@ -2176,7 +2178,8 @@ class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): After a change-of-basis, the 2-by-2 algebra has the same multiplication table as the ten-dimensional Jordan spin algebra:: - sage: b = OctonionHermitianEJA._denormalized_basis(2,QQ) + sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ) + sage: b = OctonionHermitianEJA._denormalized_basis(A) sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],) sage: jp = OctonionHermitianEJA.jordan_product sage: ip = OctonionHermitianEJA.trace_inner_product @@ -2955,11 +2958,13 @@ class CartesianProductEJA(FiniteDimensionalEJA): sage: J2 = ComplexHermitianEJA(1) sage: J = cartesian_product([J1,J2]) sage: J.one().to_matrix()[0] - [1 0] - [0 1] + +---+ + | 1 | + +---+ sage: J.one().to_matrix()[1] - [1 0] - [0 1] + +---+ + | 1 | + +---+ :: diff --git a/mjo/matrix_algebra.py b/mjo/matrix_algebra.py index 73286ff..bd173ea 100644 --- a/mjo/matrix_algebra.py +++ b/mjo/matrix_algebra.py @@ -185,9 +185,8 @@ class MatrixAlgebra(CombinatorialFreeModule): if "Unital" in entry_algebra.category().axioms(): category = category.Unital() entry_one = entry_algebra.one() - self.one = lambda: sum( (self.monomial((i,i,entry_one)) - for i in range(self.nrows()) ), - self.zero() ) + self.one = lambda: self.sum( (self.monomial((i,i,entry_one)) + for i in range(self.nrows()) ) ) if "Associative" in entry_algebra.category().axioms(): category = category.Associative() @@ -352,9 +351,10 @@ class MatrixAlgebra(CombinatorialFreeModule): # We have to convert alpha_g because a priori it lives in the # base ring of the entry algebra. R = self.base_ring() - return self.sum( R(alpha_g)*self.monomial( (i,l,g) ) - for (alpha_g, g) - in zip(p, self.entry_algebra_gens())) + return self.sum_of_terms( (((i,l,g), R(alpha_g)) + for (alpha_g, g) + in zip(p, self.entry_algebra_gens()) ), + distinct=True) else: return self.zero() @@ -414,9 +414,10 @@ class MatrixAlgebra(CombinatorialFreeModule): # We have to convert alpha_g because a priori it lives in the # base ring of the entry algebra. R = self.base_ring() - return self.sum( R(alpha_g)*self.monomial( (i,j,g) ) - for (alpha_g, g) - in zip(p, self.entry_algebra_gens())) + return self.sum_of_terms( (((i,j,g), R(alpha_g)) + for (alpha_g, g) + in zip(p, self.entry_algebra_gens()) ), + distinct=True) return self.sum( entry_to_element(i,j,entries[i][j]) for j in range(ncols) -- 2.44.2