From 69dde0cab851cd1839ad11db6b5d807a5ab936a2 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Mon, 24 Jun 2019 22:52:09 -0400 Subject: [PATCH] eja/euclidean_jordan_algebra.py: rewrite the classcall/init process. I'm not sure what I just did, but by copying the __classcall_private__ method from FiniteDimensionalAlgebra, I was able to make it take an extra (optional) "rank" parameter while creating EJAs. This lets us hard-code the rank for known EJAs, and put off figuring how we might compute it otherwise. --- mjo/eja/euclidean_jordan_algebra.py | 71 +++++++++++++++++++++++------ 1 file changed, 58 insertions(+), 13 deletions(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index d460aa0..a1b28a2 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -5,35 +5,80 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ +from sage.categories.magmatic_algebras import MagmaticAlgebras +from sage.structure.element import is_Matrix +from sage.structure.category_object import normalize_names + from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): @staticmethod - def __classcall__(cls, field, mult_table, names='e', category=None): - fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls) - return fda.__classcall_private__(cls, - field, - mult_table, - names, - category) + def __classcall_private__(cls, + field, + mult_table, + names='e', + assume_associative=False, + category=None, + rank=None): + n = len(mult_table) + mult_table = [b.base_extend(field) for b in mult_table] + for b in mult_table: + b.set_immutable() + if not (is_Matrix(b) and b.dimensions() == (n, n)): + raise ValueError("input is not a multiplication table") + if not (b.is_symmetric()): + # Euclidean jordan algebras are commutative, so left/right + # multiplication is the same. + raise ValueError("multiplication table must be symmetric") + mult_table = tuple(mult_table) + + cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis() + cat.or_subcategory(category) + if assume_associative: + cat = cat.Associative() + + names = normalize_names(n, names) - def __init__(self, field, mult_table, names='e', category=None): + fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls) + return fda.__classcall__(cls, + field, + mult_table, + assume_associative=assume_associative, + names=names, + category=cat, + rank=rank) + + + def __init__(self, field, + mult_table, + names='e', + assume_associative=False, + category=None, + rank=None): + self._rank = rank fda = super(FiniteDimensionalEuclideanJordanAlgebra, self) - fda.__init__(field, mult_table, names, category) + fda.__init__(field, + mult_table, + names=names, + category=category) def _repr_(self): """ Return a string representation of ``self``. """ - return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring()) + fmt = "Euclidean Jordan algebra of degree {} over {}" + return fmt.format(self.degree(), self.base_ring()) def rank(self): """ Return the rank of this EJA. """ - raise NotImplementedError + if self._rank is None: + raise ValueError("no rank specified at genesis") + else: + return self._rank class Element(FiniteDimensionalAlgebraElement): @@ -226,7 +271,7 @@ def eja_rn(dimension, field=QQ): Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i)) for i in xrange(dimension) ] - return FiniteDimensionalEuclideanJordanAlgebra(field,Qs) + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension) def eja_ln(dimension, field=QQ): @@ -276,4 +321,4 @@ def eja_ln(dimension, field=QQ): Qi[0,0] = Qi[0,0] * ~field(2) Qs.append(Qi) - return FiniteDimensionalEuclideanJordanAlgebra(field,Qs) + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=2) -- 2.44.2