From 642a83a2666d519404dc609b27081f328f823ace Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 24 Feb 2023 08:49:04 -0500 Subject: [PATCH] eja: rename operator_inner_product -> operator_trace inner_product. ...and add an operator_trace_norm() method, for elements. It would have been weird to have it called operator_norm(), wouldn't it? --- mjo/eja/eja_element.py | 174 ++++++++++++++++++++++++++--------------- 1 file changed, 112 insertions(+), 62 deletions(-) diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index a229fa3..f4d5995 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -555,7 +555,7 @@ class EJAElement(IndexedFreeModuleElement): If computing my determinant will be fast, we do so and compare with zero (Proposition II.2.4 in Faraut and - Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi + Korányi). Otherwise, Proposition II.3.2 in Faraut and Korányi reduces the problem to the invertibility of my quadratic representation. @@ -1575,7 +1575,75 @@ class EJAElement(IndexedFreeModuleElement): # we want the negative of THAT for the trace. return -p(*self.to_vector()) - def operator_inner_product(self, other): + + def trace_inner_product(self, other): + """ + Return the trace inner product of myself and ``other``. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS: + + The trace inner product is commutative, bilinear, and associative:: + + sage: J = random_eja() + sage: x,y,z = J.random_elements(3) + sage: # commutative + sage: x.trace_inner_product(y) == y.trace_inner_product(x) + True + sage: # bilinear + sage: a = J.base_ring().random_element() + sage: actual = (a*(x+z)).trace_inner_product(y) + sage: expected = ( a*x.trace_inner_product(y) + + ....: a*z.trace_inner_product(y) ) + sage: actual == expected + True + sage: actual = x.trace_inner_product(a*(y+z)) + sage: expected = ( a*x.trace_inner_product(y) + + ....: a*x.trace_inner_product(z) ) + sage: actual == expected + True + sage: # associative + sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) + True + + """ + if not other in self.parent(): + raise TypeError("'other' must live in the same algebra") + + return (self*other).trace() + + + def trace_norm(self): + """ + The norm of this element with respect to :meth:`trace_inner_product`. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + ....: HadamardEJA) + + EXAMPLES:: + + sage: J = HadamardEJA(2) + sage: x = sum(J.gens()) + sage: x.trace_norm() + 1.414213562373095? + + :: + + sage: J = JordanSpinEJA(4) + sage: x = sum(J.gens()) + sage: x.trace_norm() + 2.828427124746190? + + """ + return self.trace_inner_product(self).sqrt() + + + def operator_trace_inner_product(self, other): r""" Return the operator inner product of myself and ``other``. @@ -1587,10 +1655,10 @@ class EJAElement(IndexedFreeModuleElement): Euclidean Jordan algebra, this is another associative inner product under which the cone of squares is symmetric. - This *probably* works even if the basis hasn't been - orthonormalized because the eigenvalues of the corresponding - matrix don't change when the basis does (they're preserved by - any similarity transformation). + This works even if the basis hasn't been orthonormalized + because the eigenvalues of the corresponding matrix don't + change when the basis does (they're preserved by any + similarity transformation). SETUP:: @@ -1610,7 +1678,7 @@ class EJAElement(IndexedFreeModuleElement): sage: x,y = J.random_elements(2) sage: n = J.dimension() sage: r = J.rank() - sage: actual = x.operator_inner_product(y) + sage: actual = x.operator_trace_inner_product(y) sage: expected = (n/r)*x.trace_inner_product(y) sage: actual == expected True @@ -1621,7 +1689,7 @@ class EJAElement(IndexedFreeModuleElement): sage: x,y = J.random_elements(2) sage: n = J.dimension() sage: r = J.rank() - sage: actual = x.operator_inner_product(y) + sage: actual = x.operator_trace_inner_product(y) sage: expected = (n/r)*x.trace_inner_product(y) sage: actual == expected True @@ -1632,7 +1700,7 @@ class EJAElement(IndexedFreeModuleElement): sage: x,y = J.random_elements(2) sage: n = J.dimension() sage: r = J.rank() - sage: actual = x.operator_inner_product(y) + sage: actual = x.operator_trace_inner_product(y) sage: expected = (n/r)*x.trace_inner_product(y) sage: actual == expected True @@ -1645,98 +1713,80 @@ class EJAElement(IndexedFreeModuleElement): sage: J = random_eja() sage: x,y,z = J.random_elements(3) sage: # commutative - sage: x.operator_inner_product(y) == y.operator_inner_product(x) + sage: actual = x.operator_trace_inner_product(y) + sage: expected = y.operator_trace_inner_product(x) + sage: actual == expected True sage: # bilinear sage: a = J.base_ring().random_element() - sage: actual = (a*(x+z)).operator_inner_product(y) - sage: expected = ( a*x.operator_inner_product(y) + - ....: a*z.operator_inner_product(y) ) + sage: actual = (a*(x+z)).operator_trace_inner_product(y) + sage: expected = ( a*x.operator_trace_inner_product(y) + + ....: a*z.operator_trace_inner_product(y) ) sage: actual == expected True - sage: actual = x.operator_inner_product(a*(y+z)) - sage: expected = ( a*x.operator_inner_product(y) + - ....: a*x.operator_inner_product(z) ) + sage: actual = x.operator_trace_inner_product(a*(y+z)) + sage: expected = ( a*x.operator_trace_inner_product(y) + + ....: a*x.operator_trace_inner_product(z) ) sage: actual == expected True sage: # associative - sage: actual = (x*y).operator_inner_product(z) - sage: expected = y.operator_inner_product(x*z) + sage: actual = (x*y).operator_trace_inner_product(z) + sage: expected = y.operator_trace_inner_product(x*z) sage: actual == expected True - """ - if not other in self.parent(): - raise TypeError("'other' must live in the same algebra") - - return (self*other).operator().matrix().trace() + Despite the fact that the implementation uses a matrix representation, + the answer is independent of the basis used:: - - def trace_inner_product(self, other): - """ - Return the trace inner product of myself and ``other``. - - SETUP:: - - sage: from mjo.eja.eja_algebra import random_eja - - TESTS: - - The trace inner product is commutative, bilinear, and associative:: - - sage: J = random_eja() - sage: x,y,z = J.random_elements(3) - sage: # commutative - sage: x.trace_inner_product(y) == y.trace_inner_product(x) - True - sage: # bilinear - sage: a = J.base_ring().random_element() - sage: actual = (a*(x+z)).trace_inner_product(y) - sage: expected = ( a*x.trace_inner_product(y) + - ....: a*z.trace_inner_product(y) ) - sage: actual == expected - True - sage: actual = x.trace_inner_product(a*(y+z)) - sage: expected = ( a*x.trace_inner_product(y) + - ....: a*x.trace_inner_product(z) ) + sage: J = RealSymmetricEJA(3, field=QQ, orthonormalize=False) + sage: V = RealSymmetricEJA(3) + sage: x,y = J.random_elements(2) + sage: w = V(x.to_matrix()) + sage: z = V(y.to_matrix()) + sage: expected = x.operator_trace_inner_product(y) + sage: actual = w.operator_trace_inner_product(z) sage: actual == expected True - sage: # associative - sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) - True """ if not other in self.parent(): raise TypeError("'other' must live in the same algebra") - return (self*other).trace() + return (self*other).operator().matrix().trace() - def trace_norm(self): + def operator_trace_norm(self): """ - The norm of this element with respect to :meth:`trace_inner_product`. + The norm of this element with respect to + :meth:`operator_trace_inner_product`. SETUP:: sage: from mjo.eja.eja_algebra import (JordanSpinEJA, ....: HadamardEJA) - EXAMPLES:: + EXAMPLES: + + On a simple algebra, this will differ from :meth:`trace_norm` + by the scalar factor ``(n/r).sqrt()``, where `n` is the + dimension of the algebra and `r` its rank. This follows from + the corresponding result (Proposition III.4.2 of Faraut and + Korányi) for the trace inner product:: sage: J = HadamardEJA(2) sage: x = sum(J.gens()) - sage: x.trace_norm() + sage: x.operator_trace_norm() 1.414213562373095? :: sage: J = JordanSpinEJA(4) sage: x = sum(J.gens()) - sage: x.trace_norm() - 2.828427124746190? + sage: x.operator_trace_norm() + 4 """ - return self.trace_inner_product(self).sqrt() + return self.operator_trace_inner_product(self).sqrt() class CartesianProductParentEJAElement(EJAElement): -- 2.44.2