From 5d752b41ea1f09292f9e64278ba81cf0b395c001 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Thu, 10 Nov 2016 21:26:31 -0500 Subject: [PATCH] Make the _C(), _A(), and _b() methods for games public. --- dunshire/games.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/dunshire/games.py b/dunshire/games.py index 71da5ed..672810d 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -581,7 +581,7 @@ class SymmetricLinearGame: return matrix(0, (self.dimension(), 1), tc='d') - def _A(self): + def A(self): """ Return the matrix ``A`` used in our CVXOPT construction. @@ -609,7 +609,7 @@ class SymmetricLinearGame: >>> e1 = [1,1,1] >>> e2 = [1,2,3] >>> SLG = SymmetricLinearGame(L, K, e1, e2) - >>> print(SLG._A()) + >>> print(SLG.A()) [0.0000000 1.0000000 2.0000000 3.0000000] @@ -698,7 +698,7 @@ class SymmetricLinearGame: return matrix([-1, self._zero()]) - def _C(self): + def C(self): """ Return the cone ``C`` used in our CVXOPT construction. @@ -720,7 +720,7 @@ class SymmetricLinearGame: >>> e1 = [1,2,3] >>> e2 = [1,1,1] >>> SLG = SymmetricLinearGame(L, K, e1, e2) - >>> print(SLG._C()) + >>> print(SLG.C()) Cartesian product of dimension 6 with 2 factors: * Nonnegative orthant in the real 3-space * Nonnegative orthant in the real 3-space @@ -770,7 +770,7 @@ class SymmetricLinearGame: @staticmethod - def _b(): + def b(): """ Return the ``b`` vector used in our CVXOPT construction. @@ -801,7 +801,7 @@ class SymmetricLinearGame: >>> e1 = [1,2,3] >>> e2 = [1,1,1] >>> SLG = SymmetricLinearGame(L, K, e1, e2) - >>> print(SLG._b()) + >>> print(SLG.b()) [1.0000000] @@ -930,9 +930,9 @@ class SymmetricLinearGame: soln_dict = solvers.conelp(self._c(), self._G(), self._h(), - self._C().cvxopt_dims(), - self._A(), - self._b(), + self.C().cvxopt_dims(), + self.A(), + self.b(), options=opts) except ValueError as error: if str(error) == 'math domain error': @@ -1036,7 +1036,7 @@ class SymmetricLinearGame: True """ - return (condition_number(self._G()) + condition_number(self._A()))/2 + return (condition_number(self._G()) + condition_number(self.A()))/2 def dual(self): -- 2.44.2