From 59455aa178bab325230b86ddfe2d40fd1f6b2394 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Mon, 11 Jan 2016 09:42:36 -0500 Subject: [PATCH] Clean up some notation in tests. --- mjo/cone/cone.py | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 28ad0a4..66d6ccf 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -419,8 +419,8 @@ def positive_operator_gens(K): sage: K.is_full_space() True sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() - sage: actual == n^2 + sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) + sage: pi_cone.lineality() == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: pi_of_K = positive_operator_gens(K) @@ -568,12 +568,12 @@ def Z_transformation_gens(K): sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: L = ToricLattice(K.lattice_dim()**2) - sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ], + sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ], ....: lattice=L, ....: check=False) sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ] sage: lls = L.vector_space().span(ll_basis) - sage: z_cone.linear_subspace() == lls + sage: Z_cone.linear_subspace() == lls True The lineality of the Z-transformations on a cone is the Lyapunov @@ -583,10 +583,10 @@ def Z_transformation_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: Z_of_K = Z_transformation_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: z_cone = Cone([ z.list() for z in Z_of_K ], + sage: Z_cone = Cone([ z.list() for z in Z_of_K ], ....: lattice=L, ....: check=False) - sage: z_cone.lineality() == K.lyapunov_rank() + sage: Z_cone.lineality() == K.lyapunov_rank() True The lineality spaces of the duals of the positive operator and @@ -602,13 +602,13 @@ def Z_transformation_gens(K): sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) - sage: z_cone = Cone([ z.list() for z in Z_of_K], + sage: Z_cone = Cone([ z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) - sage: pi_cone.dim() == z_cone.dim() + sage: pi_cone.dim() == Z_cone.dim() True sage: pi_star = pi_cone.dual() - sage: z_star = z_cone.dual() + sage: z_star = Z_cone.dual() sage: pi_star.linear_subspace() == z_star.linear_subspace() True @@ -621,26 +621,26 @@ def Z_transformation_gens(K): True sage: L = ToricLattice(n^2) sage: Z_of_K = Z_transformation_gens(K) - sage: z_cone = Cone([z.list() for z in Z_of_K], + sage: Z_cone = Cone([z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) - sage: actual = z_cone.dim() + sage: actual = Z_cone.dim() sage: actual == n^2 True sage: K = K.dual() sage: K.is_full_space() True - sage: z_of_K = Z_transformation_gens(K) - sage: z_cone = Cone([z.list() for z in Z_of_K], + sage: Z_of_K = Z_transformation_gens(K) + sage: Z_cone = Cone([z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) - sage: actual = z_cone.dim() + sage: actual = Z_cone.dim() sage: actual == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: Z_of_K = Z_transformation_gens(K) - sage: actual = Cone([z.list() for z in Z_of_K], check=False).dim() - sage: actual == 3 + sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False) + sage: Z_cone.dim() == 3 True """ # Matrices are not vectors in Sage, so we have to convert them -- 2.44.2