From 42e532c7a3cf00e2d6ce1e70d05435bf0d30010c Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Thu, 29 Aug 2019 20:17:41 -0400 Subject: [PATCH] eja: ensure that we can construct quaternion matrices over AA and RR. --- mjo/eja/TODO | 4 +--- mjo/eja/eja_algebra.py | 14 ++++++++++++-- 2 files changed, 13 insertions(+), 5 deletions(-) diff --git a/mjo/eja/TODO b/mjo/eja/TODO index 98314ce..51c2a33 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -18,6 +18,4 @@ So long as we can decompose the operator (which is invariant under changes of basis), who cares? -8. Ensure that we can construct all algebras over both AA and RR. - -9. Check that our field is a subring of RLF. +8. Check that our field is a subring of RLF. diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 359b740..430f233 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1344,9 +1344,9 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): In theory, our "field" can be any subfield of the reals:: - sage: ComplexHermitianEJA(2,AA) + sage: ComplexHermitianEJA(2, AA) Euclidean Jordan algebra of dimension 4 over Algebraic Real Field - sage: ComplexHermitianEJA(2,RR) + sage: ComplexHermitianEJA(2, RR) Euclidean Jordan algebra of dimension 4 over Real Field with 53 bits of precision @@ -1635,6 +1635,16 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA + EXAMPLES: + + In theory, our "field" can be any subfield of the reals:: + + sage: QuaternionHermitianEJA(2, AA) + Euclidean Jordan algebra of dimension 6 over Algebraic Real Field + sage: QuaternionHermitianEJA(2, RR) + Euclidean Jordan algebra of dimension 6 over Real Field with + 53 bits of precision + TESTS: The dimension of this algebra is `2*n^2 - n`:: -- 2.44.2