From 2398b156d5cec30d4ede3e65ae1c89ad08551447 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sun, 2 Feb 2020 19:49:23 -0500 Subject: [PATCH] examples.tex: fix existing chktex problems. --- .chktexrc | 6 ++++++ examples.tex | 26 +++++++++++++------------- 2 files changed, 19 insertions(+), 13 deletions(-) diff --git a/.chktexrc b/.chktexrc index 7f1f685..b754edc 100644 --- a/.chktexrc +++ b/.chktexrc @@ -1,6 +1,12 @@ # America, fuck yeah. QuoteStyle = Traditional +# Don't check for LaTeX syntax in code snippets. +VerbEnvir +{ + tcblisting +} + # If you're using cleveref with custom label names, then you need to # tell chktex that \label can take an optional argument. # diff --git a/examples.tex b/examples.tex index 65e0c80..1d79079 100644 --- a/examples.tex +++ b/examples.tex @@ -13,7 +13,7 @@ % We have to load this after hyperref, so that links work, but before % mjotex so that mjotex knows to define its glossary entries. \usepackage[nonumberlist]{glossaries} -\makenoidxglossaries +\makenoidxglossaries{} % If you want an index, we can do that too. You'll need to define % the "INDICES" variable in the GNUmakefile, though. @@ -26,14 +26,14 @@ \begin{document} \begin{section}{Algebra} - If $R$ is a \index{commutative ring}, then $\polyring{R}{X,Y,Z}$ - is a multivariate polynomial ring with indeterminates $X$, $Y$, - and $Z$, and coefficients in $R$. If $R$ is a moreover an integral - domain, then its fraction field is $\Frac{R}$. If $x,y,z \in R$, - then $\ideal{\set{x,y,z}}$ is the ideal generated by - $\set{x,y,z}$, which is defined to be the smallest ideal in $R$ - containing that set. Likewise, if we are in an algebra - $\mathcal{A}$ and if $x,y,z \in \mathcal{A}$, then + If $R$ is a commutative ring\index{commutative ring}, then + $\polyring{R}{X,Y,Z}$ is a multivariate polynomial ring with + indeterminates $X$, $Y$, and $Z$, and coefficients in $R$. If $R$ + is a moreover an integral domain, then its fraction field is + $\Frac{R}$. If $x,y,z \in R$, then $\ideal{\set{x,y,z}}$ is the + ideal generated by $\set{x,y,z}$, which is defined to be the + smallest ideal in $R$ containing that set. Likewise, if we are in + an algebra $\mathcal{A}$ and if $x,y,z \in \mathcal{A}$, then $\alg{\set{x,y,z}}$ is the smallest subalgebra of $\mathcal{A}$ containing the set $\set{x,y,z}$. @@ -54,7 +54,7 @@ \While{$M$ is not sorted} \State{Rearrange $M$ randomly} - \EndWhile + \EndWhile{} \Return{$M$} \end{algorithmic} @@ -211,7 +211,7 @@ \oplus \oplusperp \oplus \oplusperp \end{align*} % - Its form should also survive in different font sizes... + Its form should also survive in different font sizes\ldots \Large \begin{align*} Z = \directsumperp{V}{W}\\ @@ -399,8 +399,8 @@ \setlength{\glslistdottedwidth}{.3\linewidth} \setglossarystyle{listdotted} - \glsaddall - \printnoidxglossaries + \glsaddall{} + \printnoidxglossaries{} \bibliographystyle{mjo} \bibliography{local-references} -- 2.44.2