From 2066c9dd3c3cbeca2b59bf31bce3fa3ce5fd7895 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Mon, 18 Feb 2019 09:00:45 -0500 Subject: [PATCH] mjo/orthogonal_polynomials.py: fix doctests. --- mjo/orthogonal_polynomials.py | 13 +++++-------- 1 file changed, 5 insertions(+), 8 deletions(-) diff --git a/mjo/orthogonal_polynomials.py b/mjo/orthogonal_polynomials.py index 589aa80..7544f65 100644 --- a/mjo/orthogonal_polynomials.py +++ b/mjo/orthogonal_polynomials.py @@ -1,7 +1,7 @@ from sage.all import * def legendre_p(n, x, a = -1, b = 1): - """ + r""" Returns the ``n``th Legendre polynomial of the first kind over the interval [a, b] with respect to ``x``. @@ -72,15 +72,12 @@ def legendre_p(n, x, a = -1, b = 1): sage: a = -pi sage: b = pi sage: def inner_product(v1, v2): - ... return integrate(v1*v2, x, a, b) - ... + ....: return integrate(v1*v2, x, a, b) sage: def norm(v): - ... return sqrt(inner_product(v,v)) - ... + ....: return sqrt(inner_product(v,v)) sage: def project(basis, v): - ... return sum( inner_product(v, b)*b/norm(b)**2 - ... for b in basis) - ... + ....: return sum( inner_product(v, b)*b/norm(b)**2 + ....: for b in basis) sage: f = sin(x) sage: legendre_basis = [ legendre_p(k, x, a, b) for k in xrange(4) ] sage: proj = project(legendre_basis, f) -- 2.44.2