From 0fbef149002b9bec70c64eab9170cb22e59afd9f Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sun, 23 Jun 2019 22:05:30 -0400 Subject: [PATCH] eja/euclidean_jordan_algebra.py: begin implementing an element class. --- mjo/eja/euclidean_jordan_algebra.py | 60 ++++++++++++++++++++++++++++- 1 file changed, 59 insertions(+), 1 deletion(-) diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 624806f..52e1383 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -5,8 +5,8 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from sage.structure.unique_representation import UniqueRepresentation from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra +from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): @staticmethod @@ -29,6 +29,64 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): """ return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring()) + def rank(self): + """ + Return the rank of this EJA. + """ + raise NotImplementedError + + + class Element(FiniteDimensionalAlgebraElement): + """ + An element of a Euclidean Jordan algebra. + """ + + def __pow__(self, n): + """ + Return ``self`` raised to the power ``n``. + + Jordan algebras are always power-associative; see for + example Faraut and Koranyi, Proposition II.1.2 (ii). + """ + A = self.parent() + if n == 0: + return A.one() + elif n == 1: + return self + else: + return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + + + def degree(self): + """ + Compute the degree of this element the straightforward way + according to the definition; by appending powers to a list + and figuring out its dimension (that is, whether or not + they're linearly dependent). + + EXAMPLES:: + + sage: J = eja_ln(4) + sage: J.one().degree() + 1 + sage: e0,e1,e2,e3 = J.gens() + sage: (e0 - e1).degree() + 2 + + """ + d = 0 + V = self.vector().parent() + vectors = [(self**d).vector()] + while V.span(vectors).dimension() > d: + d += 1 + vectors.append((self**d).vector()) + return d + + def minimal_polynomial(self): + return self.matrix().minimal_polynomial() + + def characteristic_polynomial(self): + return self.matrix().characteristic_polynomial() def eja_rn(dimension, field=QQ): -- 2.44.2