From 02cbbda68c8efd79b3c9735d5eca7e7162b24840 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sat, 6 Mar 2021 17:40:53 -0500 Subject: [PATCH] eja: enable (dimension one) Octonion algebras in random_eja(). --- mjo/eja/eja_algebra.py | 47 ++++++++++++++++++++++++++++++++++++------ 1 file changed, 41 insertions(+), 6 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 43f8021..6750f22 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1542,7 +1542,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): class RationalBasisEJA(FiniteDimensionalEJA): r""" - New class for algebras whose supplied basis elements have all rational entries. + Algebras whose supplied basis elements have all rational entries. SETUP:: @@ -2584,7 +2584,7 @@ class QuaternionHermitianEJA(ConcreteEJA, n = ZZ.random_element(cls._max_random_instance_size() + 1) return cls(n, **kwargs) -class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA): +class OctonionHermitianEJA(ConcreteEJA, MatrixEJA): r""" SETUP:: @@ -2667,7 +2667,23 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA): sage: J.rank.clear_cache() # long time sage: J.rank() # long time 2 + """ + @staticmethod + def _max_random_instance_size(): + r""" + The maximum rank of a random QuaternionHermitianEJA. + """ + return 1 # Dimension 1 + + @classmethod + def random_instance(cls, **kwargs): + """ + Return a random instance of this type of algebra. + """ + n = ZZ.random_element(cls._max_random_instance_size() + 1) + return cls(n, **kwargs) + def __init__(self, n, field=AA, **kwargs): if n > 3: # Otherwise we don't get an EJA. @@ -3641,7 +3657,9 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA, SETUP:: - sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + sage: from mjo.eja.eja_algebra import (HadamardEJA, + ....: JordanSpinEJA, + ....: OctonionHermitianEJA, ....: RealSymmetricEJA) EXAMPLES: @@ -3658,15 +3676,32 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA, sage: J.rank() 5 + TESTS: + + The ``cartesian_product()`` function only uses the first factor to + decide where the result will live; thus we have to be careful to + check that all factors do indeed have a `_rational_algebra` member + before we try to access it:: + + sage: J1 = OctonionHermitianEJA(1) # no rational basis + sage: J2 = HadamardEJA(2) + sage: cartesian_product([J1,J2]) + Euclidean Jordan algebra of dimension 1 over Algebraic Real Field + (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field + sage: cartesian_product([J2,J1]) + Euclidean Jordan algebra of dimension 2 over Algebraic Real Field + (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field + """ def __init__(self, algebras, **kwargs): CartesianProductEJA.__init__(self, algebras, **kwargs) self._rational_algebra = None if self.vector_space().base_field() is not QQ: - self._rational_algebra = cartesian_product([ - r._rational_algebra for r in algebras - ]) + if all( hasattr(r, "_rational_algebra") for r in algebras ): + self._rational_algebra = cartesian_product([ + r._rational_algebra for r in algebras + ]) RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA -- 2.44.2