From: Michael Orlitzky Date: Wed, 24 Feb 2021 16:01:28 +0000 (-0500) Subject: eja: drop custom _is_commutative() in favor of is_commutative(). X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=fe4405d4c4e5eec48f1924fc75e6aedd08f5c938;p=sage.d.git eja: drop custom _is_commutative() in favor of is_commutative(). --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 99cf0d0..c862b0d 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -332,18 +332,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): """ return "Associative" in self.category().axioms() - def _is_commutative(self): - r""" - Whether or not this algebra's multiplication table is commutative. - - This method should of course always return ``True``, unless - this algebra was constructed with ``check_axioms=False`` and - passed an invalid multiplication table. - """ - return all( self.product_on_basis(i,j) == self.product_on_basis(i,j) - for i in range(self.dimension()) - for j in range(self.dimension()) ) - def _is_jordanian(self): r""" Whether or not this algebra's multiplication table respects the @@ -351,7 +339,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): We only check one arrangement of `x` and `y`, so for a ``True`` result to be truly true, you should also check - :meth:`_is_commutative`. This method should of course always + :meth:`is_commutative`. This method should of course always return ``True``, unless this algebra was constructed with ``check_axioms=False`` and passed an invalid multiplication table. """