From: Michael Orlitzky Date: Mon, 4 Nov 2019 14:02:59 +0000 (-0500) Subject: mjo-common: move \Sn and \Hn into mjo-linear_algebra. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=fe30cc3cf8f9a88785d2899d00a727931377bb5d;p=mjotex.git mjo-common: move \Sn and \Hn into mjo-linear_algebra. --- diff --git a/examples.tex b/examples.tex index a2e9cf3..0656165 100644 --- a/examples.tex +++ b/examples.tex @@ -117,11 +117,7 @@ superscript when that superscript would be one: $\Nn[1]$, $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the superscript is (say) two, then it appears: $\Nn[2]$, $\Zn[2]$, - $\Qn[2]$, $\Rn[2]$, $\Cn[2]$. Likewise we have the $n$-by-$n$ - real-symmetric and complex-Hermitian matrices $\Sn$ and $\Hn$ - respectively; however $\Sn[1]$ and $\Hn[1]$ do not automatically - simplify because the ``$n$'' does not indicate the arity of a - Cartesian product in this case. + $\Qn[2]$, $\Rn[2]$, $\Cn[2]$. We also have a few basic set operations, for example the union of two or three sets: $\union{A}{B}$, $\unionthree{A}{B}{C}$. And of @@ -196,7 +192,11 @@ $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific concept is the Moore-Penrose pseudoinverse of $L$, denoted by $\pseudoinverse{L}$. Finally, the rank of a matrix $L$ is - $\rank{L}$. + $\rank{L}$. As far as matrix spaces go, we have the $n$-by-$n$ + real-symmetric and complex-Hermitian matrices $\Sn$ and $\Hn$ + respectively; however $\Sn[1]$ and $\Hn[1]$ do not automatically + simplify because the ``$n$'' does not indicate the arity of a + Cartesian product in this case. The span of a set $X$ is $\spanof{X}$, and its codimension is $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The diff --git a/mjo-common.tex b/mjo-common.tex index 5971547..2819bdc 100644 --- a/mjo-common.tex +++ b/mjo-common.tex @@ -138,31 +138,6 @@ \fi -% The space of real symmetric n-by-n matrices. Does not reduce to -% merely "S" when n=1 since S^{n} does not mean an n-fold cartesian -% product of S^{1}. -\newcommand*{\Sn}[1][n]{ \mathcal{S}^{#1} } -\ifdefined\newglossaryentry - \newglossaryentry{Sn}{ - name={\ensuremath{\Sn}}, - description={the set of $n$-by-$n$ real symmetric matrices}, - sort=Sn - } -\fi - -% The space of complex Hermitian n-by-n matrices. Does not reduce to -% merely "H" when n=1 since H^{n} does not mean an n-fold cartesian -% product of H^{1}. -\newcommand*{\Hn}[1][n]{ \mathcal{H}^{#1} } -\ifdefined\newglossaryentry - \newglossaryentry{Hn}{ - name={\ensuremath{\Hn}}, - description={the set of $n$-by-$n$ complex Hermitian matrices}, - sort=Hn - } -\fi - - % % Basic set operations % diff --git a/mjo-linear_algebra.tex b/mjo-linear_algebra.tex index 204ad05..267ef67 100644 --- a/mjo-linear_algebra.tex +++ b/mjo-linear_algebra.tex @@ -119,4 +119,29 @@ \newcommand*{\directsumperp}[2]{ {#1}\oplusperp{#2} } +% The space of real symmetric n-by-n matrices. Does not reduce to +% merely "S" when n=1 since S^{n} does not mean an n-fold cartesian +% product of S^{1}. +\newcommand*{\Sn}[1][n]{ \mathcal{S}^{#1} } +\ifdefined\newglossaryentry + \newglossaryentry{Sn}{ + name={\ensuremath{\Sn}}, + description={the set of $n$-by-$n$ real symmetric matrices}, + sort=Sn + } +\fi + +% The space of complex Hermitian n-by-n matrices. Does not reduce to +% merely "H" when n=1 since H^{n} does not mean an n-fold cartesian +% product of H^{1}. +\newcommand*{\Hn}[1][n]{ \mathcal{H}^{#1} } +\ifdefined\newglossaryentry + \newglossaryentry{Hn}{ + name={\ensuremath{\Hn}}, + description={the set of $n$-by-$n$ complex Hermitian matrices}, + sort=Hn + } +\fi + + \fi