From: Michael Orlitzky Date: Sat, 13 Apr 2024 21:10:40 +0000 (-0400) Subject: mjo-algebra.tex,examples.tex: add the \variety command X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=fc43a7cd831de2042a728269e791ab82b65962ba;p=mjotex.git mjo-algebra.tex,examples.tex: add the \variety command --- diff --git a/examples.tex b/examples.tex index 6b60b00..383cef2 100644 --- a/examples.tex +++ b/examples.tex @@ -41,6 +41,9 @@ then that element is denoted by $\unit{R}$. Its additive identity element is $\zero{R}$. The stabilizer (or isotropy) subgroup of $G$ that fixes $x$ is $\Stab{G}{x}$. + + If $I$ is an ideal, then $\variety{I}$ is the variety that + corresponds to it. \end{section} \begin{section}{Algorithm} diff --git a/mjo-algebra.tex b/mjo-algebra.tex index 1ab8880..42ab2aa 100644 --- a/mjo-algebra.tex +++ b/mjo-algebra.tex @@ -94,4 +94,17 @@ % given by its second argument. \newcommand*{\Stab}[2]{ #1_{#2} } + +% The affine algebraic variety consisting of the common solutions to +% every polynomial in its argument, which should be a subset of some +% polynomial ring. +\newcommand*{\variety}[1]{ \mathcal{V}\of{{#1}} } +\ifdefined\newglossaryentry + \newglossaryentry{variety}{ + name={\ensuremath{\variety{I}}}, + description={variety corresponding to the ideal $I$}, + sort=p + } +\fi + \fi