From: Michael Orlitzky Date: Thu, 7 Jan 2016 19:55:42 +0000 (-0500) Subject: Add some lineality examples, remove one dimension one covered elsewhere. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=f7c24573f7cb25b1af2ff589a945d74f3554758c;p=sage.d.git Add some lineality examples, remove one dimension one covered elsewhere. --- diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 43ec8f7..d62ffa2 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -359,20 +359,8 @@ def positive_operator_gens(K): sage: actual == 3 True - The cone of positive operators is solid when the original cone is proper:: - - sage: set_random_seed() - sage: K = random_cone(max_ambient_dim=5, - ....: strictly_convex=True, - ....: solid=True) - sage: pi_of_K = positive_operator_gens(K) - sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) - sage: pi_cone.is_solid() - True - - The lineality of the cone of positive operators is given by the - corollary in my paper:: + The lineality of the cone of positive operators follows from the + description of its generators:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=5) @@ -384,8 +372,33 @@ def positive_operator_gens(K): sage: actual == expected True - The cone ``K`` is proper if and only if the cone of positive - operators on ``K`` is proper:: + The trivial cone, full space, and half-plane all give rise to the + expected linealities:: + + sage: n = ZZ.random_element().abs() + sage: K = Cone([[0] * n], ToricLattice(n)) + sage: K.is_trivial() + True + sage: L = ToricLattice(n^2) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: actual == n^2 + True + sage: K = K.dual() + sage: K.is_full_space() + True + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: actual == n^2 + True + sage: K = Cone([(1,0),(0,1),(0,-1)]) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K]).lineality() + sage: actual == 2 + True + + A cone is proper if and only if its cone of positive operators + is proper:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=5)