From: Michael Orlitzky Date: Wed, 26 Jun 2019 14:56:03 +0000 (-0400) Subject: eja: fix element powers. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=df910e34f4b07c82649aa566f81dd89a952594bd;p=sage.d.git eja: fix element powers. We were using row-vector multiplication for powers (taken from the superclass), but our vectors are column vectors. Oops. This broke things when we assumed column vectors were being used, like when we constructed a multiplication table. This commit fixes the powers and adds/updates some tests. --- diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index a4e2ad0..ef5249b 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -101,6 +101,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): Jordan algebras are always power-associative; see for example Faraut and Koranyi, Proposition II.1.2 (ii). + + .. WARNING: + + We have to override this because our superclass uses row vectors + instead of column vectors! We, on the other hand, assume column + vectors everywhere. + + EXAMPLES: + + sage: set_random_seed() + sage: J = eja_ln(5) + sage: x = J.random_element() + sage: x.matrix()*x.vector() == (x**2).vector() + True + """ A = self.parent() if n == 0: @@ -108,7 +123,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): elif n == 1: return self else: - return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + return A.element_class(A, (self.matrix()**(n-1))*self.vector()) def span_of_powers(self): @@ -171,14 +186,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: x.subalgebra_generated_by().is_associative() True - This is buggy right now:: + Squaring in the subalgebra should be the same thing as + squaring in the superalgebra:: sage: J = eja_ln(5) sage: x = J.random_element() - sage: x.matrix()*x.vector() == (x**2).vector() # works - True sage: u = x.subalgebra_generated_by().random_element() - sage: u.matrix()*u.vector() == (u**2).vector() # busted + sage: u.matrix()*u.vector() == (u**2).vector() True """ @@ -197,6 +211,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # b1 is what we get if we apply that matrix to b1. The # second row of the right multiplication matrix by b1 # is what we get when we apply that matrix to b2... + # + # IMPORTANT: this assumes that all vectors are COLUMN + # vectors, unlike our superclass (which uses row vectors). for b_left in V.basis(): eja_b_left = self.parent()(b_left) # Multiply in the original EJA, but then get the @@ -363,6 +380,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # subspace... or do we? Can't we just solve, knowing that # A(c) = u^(s+1) should have a solution in the big space, # too? + # + # Beware, solve_right() means that we're using COLUMN vectors. + # Our FiniteDimensionalAlgebraElement superclass uses rows. u_next = u**(s+1) A = u_next.matrix() c_coordinates = A.solve_right(u_next.vector()) @@ -372,10 +392,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # # We need the basis for J, but as elements of the parent algebra. # - # - # TODO: this is buggy, but it's probably because the - # multiplication table for the subalgebra is wrong! The - # matrices should be symmetric I bet. basis = [self.parent(v) for v in V.basis()] return self.parent().linear_combination(zip(c_coordinates, basis))