From: Michael Orlitzky Date: Sat, 6 Jul 2019 13:29:51 +0000 (-0400) Subject: eja: fix the dimension of the complex Hermitian simple EJA. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=dc8efd626335cc741608e250bbf6a89d4af1ac8f;p=sage.d.git eja: fix the dimension of the complex Hermitian simple EJA. --- diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index c83c780..d6235d3 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -604,6 +604,43 @@ def _real_symmetric_basis(n, field=QQ): return S +def _complex_hermitian_basis(n, field=QQ): + """ + Returns a basis for the space of complex Hermitian n-by-n matrices. + + TESTS:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5).abs() + sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) ) + True + + """ + F = QuadraticField(-1, 'I') + I = F.gen() + + # This is like the symmetric case, but we need to be careful: + # + # * We want conjugate-symmetry, not just symmetry. + # * The diagonal will (as a result) be real. + # + S = [] + for i in xrange(n): + for j in xrange(i+1): + Eij = matrix(field, n, lambda k,l: k==i and l==j) + if i == j: + Sij = _embed_complex_matrix(Eij) + S.append(Sij) + else: + # Beware, orthogonal but not normalized! The second one + # has a minus because it's conjugated. + Sij_real = _embed_complex_matrix(Eij + Eij.transpose()) + S.append(Sij_real) + Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose()) + S.append(Sij_imag) + return S + + def _multiplication_table_from_matrix_basis(basis): """ At least three of the five simple Euclidean Jordan algebras have the @@ -767,20 +804,25 @@ def ComplexHermitianSimpleEJA(n, field=QQ): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, - and the real-part-of-trace inner product. It has dimension `n^2 over + and the real-part-of-trace inner product. It has dimension `n^2` over the reals. + + TESTS: + + The degree of this algebra is `n^2`:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5).abs() + sage: J = ComplexHermitianSimpleEJA(n) + sage: J.degree() == n^2 + True + """ - F = QuadraticField(-1, 'i') - i = F.gen() - S = _real_symmetric_basis(n, field=F) - T = [] - for s in S: - T.append(s) - T.append(i*s) - embed_T = [ _embed_complex_matrix(t) for t in T ] - Qs = _multiplication_table_from_matrix_basis(embed_T) + S = _complex_hermitian_basis(n) + Qs = _multiplication_table_from_matrix_basis(S) return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n) + def QuaternionHermitianSimpleEJA(n): """ The rank-n simple EJA consisting of self-adjoint n-by-n quaternion