From: Michael Orlitzky Date: Wed, 24 Feb 2021 16:00:33 +0000 (-0500) Subject: eja: add is_associative() method and corresponding cartesian product magic. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=d6f51df5e37b30956849e01b70c4aede00f3434e;p=sage.d.git eja: add is_associative() method and corresponding cartesian product magic. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index a420851..99cf0d0 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -305,11 +305,33 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: y = J.random_element() sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2) True + """ B = self._inner_product_matrix return (B*x.to_vector()).inner_product(y.to_vector()) + def is_associative(self): + r""" + Return whether or not this algebra's Jordan product is associative. + + SETUP:: + + sage: from mjo.eja.eja_algebra import ComplexHermitianEJA + + EXAMPLES:: + + sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False) + sage: J.is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: A.is_associative() + True + + """ + return "Associative" in self.category().axioms() + def _is_commutative(self): r""" Whether or not this algebra's multiplication table is commutative. @@ -2384,7 +2406,11 @@ class HadamardEJA(ConcreteEJA): if "check_axioms" not in kwargs: kwargs["check_axioms"] = False column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() ) - super().__init__(column_basis, jordan_product, inner_product, **kwargs) + super().__init__(column_basis, + jordan_product, + inner_product, + associative=True, + **kwargs) self.rank.set_cache(n) if n == 0: @@ -2779,6 +2805,25 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, sage: J.rank() == J1.rank() + J2.rank() True + The product algebra will be associative if and only if all of its + components are associative:: + + sage: J1 = HadamardEJA(2) + sage: J1.is_associative() + True + sage: J2 = HadamardEJA(3) + sage: J2.is_associative() + True + sage: J3 = RealSymmetricEJA(3) + sage: J3.is_associative() + False + sage: CP1 = cartesian_product([J1,J2]) + sage: CP1.is_associative() + True + sage: CP2 = cartesian_product([J1,J3]) + sage: CP2.is_associative() + False + TESTS: All factors must share the same base field:: @@ -2816,14 +2861,16 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, True """ - def __init__(self, modules, **kwargs): + def __init__(self, algebras, **kwargs): CombinatorialFreeModule_CartesianProduct.__init__(self, - modules, + algebras, **kwargs) - field = modules[0].base_ring() - if not all( J.base_ring() == field for J in modules ): + field = algebras[0].base_ring() + if not all( J.base_ring() == field for J in algebras ): raise ValueError("all factors must share the same base field") + associative = all( m.is_associative() for m in algebras ) + # The definition of matrix_space() and self.basis() relies # only on the stuff in the CFM_CartesianProduct class, which # we've already initialized. @@ -2859,13 +2906,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, inner_product, field=field, orthonormalize=False, + associative=associative, cartesian_product=True, check_field=False, check_axioms=False) - ones = tuple(J.one() for J in modules) + ones = tuple(J.one() for J in algebras) self.one.set_cache(self._cartesian_product_of_elements(ones)) - self.rank.set_cache(sum(J.rank() for J in modules)) + self.rank.set_cache(sum(J.rank() for J in algebras)) def matrix_space(self): r"""