From: Michael Orlitzky Date: Tue, 20 Aug 2019 20:46:16 +0000 (-0400) Subject: eja: normalize the real symmetric matrix basis. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=d4abf92e1e275554019be8987c6e837dfdc40150;p=sage.d.git eja: normalize the real symmetric matrix basis. This is necessary to ensure that the default basis representation is an isometry. When it is not, the left-multiplication operator is self-adjoint (by the Jordan axiom), but its matrix with respect to that basis is not. The other two matrix algebras need similar fixing. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 47d247b..992174e 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -502,8 +502,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): Finite family {0: e0, 1: e1, 2: e2} sage: J.natural_basis() ( - [1 0] [0 1] [0 0] - [0 0], [1 0], [0 1] + [1 0] [ 0 1/2*sqrt2] [0 0] + [0 0], [1/2*sqrt2 0], [0 1] ) :: @@ -678,7 +678,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): sage: J = RealSymmetricEJA(2) sage: J.vector_space() - Vector space of dimension 3 over Rational Field + Vector space of dimension 3 over... """ return self.zero().to_vector().parent().ambient_vector_space() @@ -827,8 +827,9 @@ def _real_symmetric_basis(n, field): if i == j: Sij = Eij else: - # Beware, orthogonal but not normalized! Sij = Eij + Eij.transpose() + # Now normalize it. + Sij = Sij / _real_symmetric_matrix_ip(Sij,Sij).sqrt() S.append(Sij) return tuple(S) @@ -1190,6 +1191,9 @@ def _matrix_ip(X,Y): Y_mat = Y.natural_representation() return (X_mat*Y_mat).trace() +def _real_symmetric_matrix_ip(X,Y): + return (X*Y).trace() + class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra): """ @@ -1208,7 +1212,7 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra): sage: e0*e0 e0 sage: e1*e1 - e0 + e2 + 1/2*e0 + 1/2*e2 sage: e2*e2 e2 @@ -1254,8 +1258,31 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra): sage: (x*y).inner_product(z) == y.inner_product(x*z) True + Our basis is normalized with respect to the natural inner product:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: J = RealSymmetricEJA(n) + sage: all( b.norm() == 1 for b in J.gens() ) + True + + Left-multiplication operators are symmetric because they satisfy + the Jordan axiom:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: x = RealSymmetricEJA(n).random_element() + sage: x.operator().matrix().is_symmetric() + True + """ def __init__(self, n, field=QQ, **kwargs): + if n > 1 and field is QQ: + # We'll need sqrt(2) to normalize the basis, and this + # winds up in the multiplication table, so the whole + # algebra needs to be over the field extension. + field = QuadraticField(2, 'sqrt2') + S = _real_symmetric_basis(n, field) Qs = _multiplication_table_from_matrix_basis(S) @@ -1267,7 +1294,9 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra): **kwargs) def inner_product(self, x, y): - return _matrix_ip(x,y) + X = x.natural_representation() + Y = y.natural_representation() + return _real_symmetric_matrix_ip(X,Y) class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra): diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index a681ae2..90c236a 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -939,7 +939,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Property 2 (multiply on the right for :trac:`28272`): - sage: alpha = QQ.random_element() + sage: alpha = J.base_ring().random_element() sage: (alpha*x).quadratic_representation() == Qx*(alpha^2) True @@ -1044,7 +1044,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: A = random_eja().zero().subalgebra_generated_by() sage: A - Euclidean Jordan algebra of dimension 0 over Rational Field + Euclidean Jordan algebra of dimension 0 over... sage: A.one() 0 @@ -1176,7 +1176,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: x = J.random_element() sage: y = J.random_element() sage: z = J.random_element() - sage: a = QQ.random_element(); + sage: a = J.base_ring().random_element(); sage: actual = (a*(x+z)).trace_inner_product(y) sage: expected = ( a*x.trace_inner_product(y) + ....: a*z.trace_inner_product(y) ) diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 7c3b2a6..4b72e57 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -81,10 +81,8 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): [2 0 0] [0 2 0] [0 0 2] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... If you try to add two identical vector space operators but on different EJAs, that should blow up:: @@ -179,10 +177,8 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): [1 0 0] [0 1 0] [0 0 1] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... """ return FiniteDimensionalEuclideanJordanAlgebraOperator( @@ -215,30 +211,31 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: x.operator() Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix: - [ 2 4 0] + [ 2 2 0] [ 2 9 2] - [ 0 4 16] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + [ 0 2 16] + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... sage: x.operator()*(1/2) Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix: - [ 1 2 0] + [ 1 1 0] [ 1 9/2 1] - [ 0 2 8] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + [ 0 1 8] + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... """ - if other in self.codomain().base_ring(): - return FiniteDimensionalEuclideanJordanAlgebraOperator( - self.domain(), - self.codomain(), - self.matrix()*other) + try: + if other in self.codomain().base_ring(): + return FiniteDimensionalEuclideanJordanAlgebraOperator( + self.domain(), + self.codomain(), + self.matrix()*other) + except NotImplementedError: + # This can happen with certain arguments if the base_ring() + # is weird and doesn't know how to test membership. + pass # This should eventually delegate to _composition_ after performing # some sanity checks for us. @@ -266,10 +263,8 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): [-1 0 0] [ 0 -1 0] [ 0 0 -1] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... """ return FiniteDimensionalEuclideanJordanAlgebraOperator( @@ -301,10 +296,8 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): [3 0 0] [0 3 0] [0 0 3] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... """ if (n == 1): @@ -380,10 +373,8 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): [-1 0 0] [ 0 -1 0] [ 0 0 -1] - Domain: Euclidean Jordan algebra of dimension 3 over - Rational Field - Codomain: Euclidean Jordan algebra of dimension 3 over - Rational Field + Domain: Euclidean Jordan algebra of dimension 3 over... + Codomain: Euclidean Jordan algebra of dimension 3 over... """ return (self + (-other)) diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index 2318d12..646da2f 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -342,20 +342,20 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide EXAMPLES:: sage: J = RealSymmetricEJA(3) - sage: x = sum( i*J.gens()[i] for i in range(6) ) + sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5) sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x) sage: K.vector_space() - Vector space of degree 6 and dimension 3 over Rational Field + Vector space of degree 6 and dimension 3 over... User basis matrix: [ 1 0 1 0 0 1] - [ 0 1 2 3 4 5] - [10 14 21 19 31 50] + [ 1 0 2 0 0 5] + [ 1 0 4 0 0 25] sage: (x^0).to_vector() (1, 0, 1, 0, 0, 1) sage: (x^1).to_vector() - (0, 1, 2, 3, 4, 5) + (1, 0, 2, 0, 0, 5) sage: (x^2).to_vector() - (10, 14, 21, 19, 31, 50) + (1, 0, 4, 0, 0, 25) """ return self._vector_space