From: Michael Orlitzky Date: Sat, 9 Jan 2016 23:05:06 +0000 (-0500) Subject: Use check=False when constructing pi/Z cones. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=c9c16b8aa4a4a6959b988d5c51e24c0fbe07e3dd;p=sage.d.git Use check=False when constructing pi/Z cones. --- diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index d0b5b6f..eac86b3 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -267,7 +267,9 @@ def positive_operator_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], + ....: lattice=L, + ....: check=False) sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) sage: all([ K.contains(P*x) for x in K ]) True @@ -279,7 +281,9 @@ def positive_operator_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], + ....: lattice=L, + ....: check=False) sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) sage: K.contains(P*K.random_element(ring=QQ)) True @@ -291,7 +295,9 @@ def positive_operator_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], + ....: lattice=L, + ....: check=False) sage: actual = pi_cone.dual().linear_subspace() sage: U1 = [ vector((s.tensor_product(x)).list()) ....: for x in K.lines() @@ -313,7 +319,9 @@ def positive_operator_gens(K): sage: l = K.lineality() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) - sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) sage: actual = pi_cone.dual().lineality() sage: expected = l*(m - l) + m*(n - m) sage: actual == expected @@ -329,7 +337,10 @@ def positive_operator_gens(K): sage: l = K.lineality() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: actual = pi_cone.dim() sage: expected = n**2 - l*(m - l) - (n - m)*m sage: actual == expected True @@ -343,19 +354,25 @@ def positive_operator_gens(K): True sage: L = ToricLattice(n^2) sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: actual = pi_cone.dim() sage: actual == n^2 True sage: K = K.dual() sage: K.is_full_space() True sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: actual = pi_cone.dim() sage: actual == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K]).dim() + sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim() sage: actual == 3 True @@ -367,7 +384,10 @@ def positive_operator_gens(K): sage: n = K.lattice_dim() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: actual = pi_cone.lineality() sage: expected = n**2 - K.dim()*K.dual().dim() sage: actual == expected True @@ -381,7 +401,10 @@ def positive_operator_gens(K): True sage: L = ToricLattice(n^2) sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: actual = pi_cone.lineality() sage: actual == n^2 True sage: K = K.dual() @@ -393,7 +416,8 @@ def positive_operator_gens(K): True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K]).lineality() + sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False) + sage: actual = pi_cone.lineality() sage: actual == 2 True @@ -404,7 +428,9 @@ def positive_operator_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) sage: K.is_proper() == pi_cone.is_proper() True """ @@ -495,9 +521,13 @@ def Z_transformation_gens(K): The lineality space of Z is LL:: sage: set_random_seed() - sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=4) - sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ]) - sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ]) + sage: K = random_cone(max_ambient_dim=4) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ], + ....: lattice=L, + ....: check=False) + sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ] + sage: lls = L.vector_space().span(ll_basis) sage: z_cone.linear_subspace() == lls True @@ -507,7 +537,9 @@ def Z_transformation_gens(K): sage: K = random_cone(max_ambient_dim=4) sage: Z_of_K = Z_transformation_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: z_cone = Cone([ z.list() for z in Z_of_K ], lattice=L) + sage: z_cone = Cone([ z.list() for z in Z_of_K ], + ....: lattice=L, + ....: check=False) sage: z_cone.lineality() == K.lyapunov_rank() True @@ -518,8 +550,14 @@ def Z_transformation_gens(K): sage: pi_of_K = positive_operator_gens(K) sage: Z_of_K = Z_transformation_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) - sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual() - sage: z_star = Cone([ z.list() for z in Z_of_K], lattice=L).dual() + sage: pi_cone = Cone([p.list() for p in pi_of_K], + ....: lattice=L, + ....: check=False) + sage: pi_star = pi_cone.dual() + sage: z_cone = Cone([ z.list() for z in Z_of_K], + ....: lattice=L, + ....: check=False) + sage: z_star = z_cone.dual() sage: pi_star.linear_subspace() == z_star.linear_subspace() True """ @@ -556,14 +594,10 @@ def Z_transformation_gens(K): def Z_cone(K): gens = Z_transformation_gens(K) - L = None - if len(gens) == 0: - L = ToricLattice(0) - return Cone([ g.list() for g in gens ], lattice=L) + L = ToricLattice(K.lattice_dim()**2) + return Cone([ g.list() for g in gens ], lattice=L, check=False) def pi_cone(K): gens = positive_operator_gens(K) - L = None - if len(gens) == 0: - L = ToricLattice(0) - return Cone([ g.list() for g in gens ], lattice=L) + L = ToricLattice(K.lattice_dim()**2) + return Cone([ g.list() for g in gens ], lattice=L, check=False)