From: Michael Orlitzky Date: Sun, 13 Oct 2019 00:02:23 +0000 (-0400) Subject: eja: declare a utf-8 encoding and use it to write Korányi. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=bbd6d4c6e39870b0936949b510e70af2b5358f9e;p=sage.d.git eja: declare a utf-8 encoding and use it to write Korányi. --- diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 5944c07..eee8f69 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1,3 +1,5 @@ +# -*- coding: utf-8 -*- + from itertools import izip from sage.matrix.constructor import matrix @@ -34,7 +36,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Return ``self`` raised to the power ``n``. Jordan algebras are always power-associative; see for - example Faraut and Koranyi, Proposition II.1.2 (ii). + example Faraut and Korányi, Proposition II.1.2 (ii). We have to override this because our superclass uses row vectors instead of column vectors! We, on the other hand, @@ -375,7 +377,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): True Ensure that the determinant is multiplicative on an associative - subalgebra as in Faraut and Koranyi's Proposition II.2.2:: + subalgebra as in Faraut and Korányi's Proposition II.2.2:: sage: set_random_seed() sage: J = random_eja().random_element().subalgebra_generated_by() @@ -460,7 +462,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): ... ValueError: element is not invertible - Proposition II.2.3 in Faraut and Koranyi says that the inverse + Proposition II.2.3 in Faraut and Korányi says that the inverse of an element is the inverse of its left-multiplication operator applied to the algebra's identity, when that inverse exists::