From: Michael Orlitzky Date: Fri, 11 Nov 2016 20:18:03 +0000 (-0500) Subject: Fix an example in the overview docs, and use ellipses in doctests. X-Git-Tag: 0.1.0~38 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=b934f519ba41db6fe6b4fb025b13ee9718f27be6;p=dunshire.git Fix an example in the overview docs, and use ellipses in doctests. --- diff --git a/doc/source/overview.rst b/doc/source/overview.rst index f4b4220..98353b2 100644 --- a/doc/source/overview.rst +++ b/doc/source/overview.rst @@ -72,13 +72,13 @@ First, we use the nonnegative orthant in :math:`\mathbb{R}^{2}`: >>> e2 = e1 >>> G = SymmetricLinearGame(L,K,e1,e2) >>> print(G.solution()) - Game value: 0.5000000 + Game value: 0.500... Player 1 optimal: - [0.5000000] - [0.5000000] + [0.500...] + [0.500...] Player 2 optimal: - [0.5000000] - [0.5000000] + [0.500...] + [0.500...] Next we try the Lorentz ice-cream cone in :math:`\mathbb{R}^{2}`: @@ -87,16 +87,16 @@ Next we try the Lorentz ice-cream cone in :math:`\mathbb{R}^{2}`: >>> from dunshire import * >>> K = IceCream(2) >>> L = [[1,0],[0,1]] - >>> e1 = [1,1] + >>> e1 = [1,0] >>> e2 = e1 >>> G = SymmetricLinearGame(L,K,e1,e2) >>> print(G.solution()) - Game value: 0.5000000 + Game value: 1.000... Player 1 optimal: - [0.8347039] - [0.1652961] + [1.000...] + [0.000...] Player 2 optimal: - [0.5000000] - [0.5000000] + [1.000...] + [0.000...] Note that these solutions are not unique, although the game values are.