From: Michael Orlitzky Date: Mon, 14 Oct 2019 13:03:38 +0000 (-0400) Subject: eja: remove EJA tests from the operator spectral decomposition. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=b0db25caf8a88f53e2845a4705cb96d6b836e401;p=sage.d.git eja: remove EJA tests from the operator spectral decomposition. The operator spectral decomposition is the usual linear algebra one, so it doesn't make sense to test EJA results there. --- diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 41d6856..6e22d36 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -524,6 +524,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): Return the spectral decomposition of this operator as a list of (eigenvalue, orthogonal projector) pairs. + This is the unique spectral decomposition, up to the order of + the projection operators, with distinct eigenvalues. So, the + projections are generally onto subspaces of dimension greater + than one. + SETUP:: sage: from mjo.eja.eja_algebra import RealSymmetricEJA @@ -547,15 +552,9 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): True sage: P1^2 == P1 True - sage: c0 = P0(A.one()) - sage: c1 = P1(A.one()) - sage: c0.inner_product(c1) == 0 - True - sage: c0 + c1 == A.one() - True - sage: c0.is_idempotent() + sage: P0*P1 == A.zero().operator() True - sage: c1.is_idempotent() + sage: P1*P0 == A.zero().operator() True """