From: Michael Orlitzky Date: Fri, 29 Nov 2024 01:17:14 +0000 (-0500) Subject: mjo/eja/eja_operator.py: add some "long time" labels X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=ad8ae5e58eb254bd6512325b634198109d13b23a;p=sage.d.git mjo/eja/eja_operator.py: add some "long time" labels --- diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 0f1652a..698bc87 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -866,7 +866,9 @@ class EJAOperator(Map): Again we repeat with a _specific_ example whose scalars are algebraic; anything larger than this takes too long (though - `n=3` is doable if you're willing to wait five minutes):: + `n=3` is doable if you're willing to wait five minutes). Even + this one can be slow if your random algebraic numbers are + unlucky:: sage: J = ComplexHermitianEJA(2) sage: U = random_unitary_matrix(QQbar, 2) @@ -875,25 +877,25 @@ class EJAOperator(Map): sage: L = lambda X: J((UU.conjugate_transpose()*X*UU)) sage: columns = ( L(b).to_vector() for b in J.matrix_basis() ) sage: MS = MatrixSpace(J.base_ring(), J.dimension(), J.dimension()) - sage: M = MS(columns).transpose() - sage: L = EJAOperator(J,J,M) - sage: L.is_isomorphism() + sage: M = MS(columns).transpose() # long time + sage: L = EJAOperator(J,J,M) # long time + sage: L.is_isomorphism() # long time True - sage: L.inverse().is_isomorphism() + sage: L.inverse().is_isomorphism() # long time True - sage: (L^2).is_isomorphism() + sage: (L^2).is_isomorphism() # long time True sage: L = lambda X: J((UU.conjugate_transpose()*X.conjugate()*UU)) sage: columns = ( L(b).to_vector() for b in J.matrix_basis() ) sage: MS = MatrixSpace(J.base_ring(), J.dimension(), J.dimension()) - sage: M = MS(columns).transpose() - sage: L = EJAOperator(J,J,M) - sage: L.is_isomorphism() + sage: M = MS(columns).transpose() # long time + sage: L = EJAOperator(J,J,M) # long time + sage: L.is_isomorphism() # long time True - sage: L.inverse().is_isomorphism() + sage: L.inverse().is_isomorphism() # long time True - sage: (L^2).is_isomorphism() + sage: (L^2).is_isomorphism() # long time True TESTS: