From: Michael Orlitzky Date: Wed, 19 Jun 2019 14:18:56 +0000 (-0400) Subject: mjo/euclidean_jordan_algebra.py: add eja_ln() for the rank-two algebra. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=a6d618bb685b0709e6fad1c46231cb32d3700724;p=sage.d.git mjo/euclidean_jordan_algebra.py: add eja_ln() for the rank-two algebra. --- diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index e0a6f2d..7611fe7 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -41,3 +41,54 @@ def eja_rn(dimension, field=QQ): for i in xrange(dimension) ] A = FiniteDimensionalAlgebra(QQ,Qs,assume_associative=True) return JordanAlgebra(A) + + +def eja_ln(dimension, field=QQ): + """ + Return the Jordan algebra corresponding to the Lorenzt "ice cream" + cone of the given ``dimension``. + + EXAMPLES: + + This multiplication table can be verified by hand:: + + sage: J = eja_ln(4) + sage: e0,e1,e2,e3 = J.gens() + sage: e0*e0 + e0 + sage: e0*e1 + e1 + sage: e0*e2 + e2 + sage: e0*e3 + e3 + sage: e1*e2 + 0 + sage: e1*e3 + 0 + sage: e2*e3 + 0 + + In one dimension, this is the reals under multiplication:: + + sage: J1 = eja_ln(1) + sage: J2 = eja_rn(1) + sage: J1 == J2 + True + + """ + Qs = [] + id_matrix = identity_matrix(field,dimension) + for i in xrange(dimension): + ei = id_matrix.column(i) + Qi = zero_matrix(field,dimension) + Qi.set_row(0, ei) + Qi.set_column(0, ei) + Qi += diagonal_matrix(dimension, [ei[0]]*dimension) + # The addition of the diagonal matrix adds an extra ei[0] in the + # upper-left corner of the matrix. + Qi[0,0] = Qi[0,0] * ~field(2) + Qs.append(Qi) + + A = FiniteDimensionalAlgebra(QQ,Qs,assume_associative=True) + return JordanAlgebra(A)