From: Michael Orlitzky Date: Thu, 24 Dec 2020 23:36:14 +0000 (-0500) Subject: eja: cache inverse() and is_invertible() more intelligently. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=a518a81a52fa629c69ab67e2c299f063ada75f00;p=sage.d.git eja: cache inverse() and is_invertible() more intelligently. --- diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index e30dbb1..66138b2 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1,4 +1,5 @@ from sage.matrix.constructor import matrix +from sage.misc.cachefunc import cached_method from sage.modules.free_module import VectorSpace from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement @@ -438,6 +439,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): return ((-1)**r)*p(*self.to_vector()) + @cached_method def inverse(self): """ Return the Jordan-multiplicative inverse of this element. @@ -482,7 +484,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: JordanSpinEJA(3).zero().inverse() Traceback (most recent call last): ... - ValueError: element is not invertible + ZeroDivisionError: element is not invertible TESTS: @@ -534,40 +536,38 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: slow == fast # long time True """ - if not self.is_invertible(): - raise ValueError("element is not invertible") - + not_invertible_msg = "element is not invertible" if self.parent()._charpoly_coefficients.is_in_cache(): # We can invert using our charpoly if it will be fast to # compute. If the coefficients are cached, our rank had # better be too! + if self.det().is_zero(): + raise ZeroDivisionError(not_invertible_msg) r = self.parent().rank() a = self.characteristic_polynomial().coefficients(sparse=False) return (-1)**(r+1)*sum(a[i+1]*self**i for i in range(r))/self.det() - return (~self.quadratic_representation())(self) + try: + inv = (~self.quadratic_representation())(self) + self.is_invertible.set_cache(True) + return inv + except ZeroDivisionError: + self.is_invertible.set_cache(False) + raise ZeroDivisionError(not_invertible_msg) + @cached_method def is_invertible(self): """ Return whether or not this element is invertible. ALGORITHM: - The usual way to do this is to check if the determinant is - zero, but we need the characteristic polynomial for the - determinant. The minimal polynomial is a lot easier to get, - so we use Corollary 2 in Chapter V of Koecher to check - whether or not the parent algebra's zero element is a root - of this element's minimal polynomial. - - That is... unless the coefficients of our algebra's - "characteristic polynomial of" function are already cached! - In that case, we just use the determinant (which will be fast - as a result). - - Beware that we can't use the superclass method, because it - relies on the algebra being associative. + If computing my determinant will be fast, we do so and compare + with zero (Proposition II.2.4 in Faraut and + Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi + reduces the problem to the invertibility of my quadratic + representation. SETUP:: @@ -600,7 +600,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: fast = x.is_invertible() # long time sage: slow == fast # long time True - """ if self.is_zero(): if self.parent().is_trivial(): @@ -609,15 +608,17 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): return False if self.parent()._charpoly_coefficients.is_in_cache(): - # The determinant will be quicker than computing the minimal - # polynomial from scratch, most likely. + # The determinant will be quicker than inverting the + # quadratic representation, most likely. return (not self.det().is_zero()) - # In fact, we only need to know if the constant term is non-zero, - # so we can pass in the field's zero element instead. - zero = self.base_ring().zero() - p = self.minimal_polynomial() - return not (p(zero) == zero) + # The easiest way to determine if I'm invertible is to try. + try: + inv = (~self.quadratic_representation())(self) + self.inverse.set_cache(inv) + return True + except ZeroDivisionError: + return False def is_primitive_idempotent(self):